75 resultados para Organic-inorganic nanocomposites


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic-inorganic composite membranes comprising Nation with inorganic materials such as silica, mesoporous zirconium phosphate (MZP) and mesoporous titanium phosphate (MTP) are fabricated and evaluated as proton-exchange-membrane electrolytes for direct methanol fuel cells (DMFCs). For Nation-silica composite membrane, silica is impregnated into Nation matrix as a sol by a novel water hydrolysis process precluding the external use of an acid. Instead, the acidic nature of Nation facilitates in situ polymerization reaction with Nation leading to a uniform composite membrane. The rapid hydrolysis and polymerization reaction while preparing zirconia and titania sols leads to uncontrolled thickness and volume reduction in the composite membranes, and hence is not conducive for casting membranes. Nafion-MZP and Nafion-MTP composite membranes are prepared by mixing pre-formed porous MZP and MTP with Nation matrix. MZP and MTP are synthesised by co-assembly of a tri-block co-polymer, namely pluronic-F127, as a structure-directing agent, and a mixture of zirconium butoxide/titanium isopropoxide and phosphorous trichloride as inorganic precursors. Methanol release kinetics is studied by volume-localized NMR spectroscopy (employing ``point resolved spectroscopy'', PRESS), the results clearly demonstrating that the incorporation of inorganic fillers in Nation retards the methanol release kinetics under osmotic drag. Appreciable proton conductivity with reduced methanol permeability across the composite membranes leads to improved performance of DMFCs in relation to commercially available Nafion-117 membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conformation, organization, and phase transitions of alkyl chains in organic-inorganic hybrids based on the double pervoskite-slab lead iodides, (CH3NH3)(CH3(CH2)(n)NH3)(2)Pb2I7 (n = 11, 13, 15, 17) have been investigated by X-ray diffraction, calorimetry, and infrared vibrational spectroscopy. In these hybrid solids, double pervoskite (CH3NH3)Pb2I7 slabs are interleaved with alkyl ammonium chains with the anchored alkyl chains arranged as tilted bilayers and adopting a planar all-trans conformation at room temperature. The (CH3NH3)(CH3(CH2)(n)NH3)(2)Pb2I7 compounds exhibit a single reversible phase transition above room temperature with the associated enthalpy change varying linearly with alkyl chain length. This transition corresponds to the melting in two-dimensions of the alkyl chains of the anchored bilayer and is characterized by increased conformational disorder of the methylene units of the chain and loss of tilt angle coherence leading to an increase in the interslab spacing. By monitoring features in the infrared spectra that are characteristic of the global conformation of the alkyl chains, a quantitative relation between conformational disorder and melting of the anchored bilayer is established. It is found that, irrespective of the alkyl chain length, melting occurs when at least 60% of the chains in the anchored bilayer of (CH3NH3)(CH3(CH2)(n)NH3)(2)Pb2I7 have one or more gauche defects. This concentration is determined by the underlying lattice to which the alkyl chains are anchored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molybdenum-doped TiO2 organic-inorganic hybrid nanoparticles were synthesized under mild hydrothermal conditions by in situ surface modification using n-butylamine. This was carried out at 150 degrees C at autogeneous pressure over 18 h. n-Butylamine was selected as a surfactant since it produced nanoparticles of the desired size and shape. The products were characterized using powder X-ray diffraction, Fourier transform infrared spectrometry, dynamic light-scattering spectroscopy, UV-Vis spectroscopy and transmission electron microscopy. Chemical oxygen demand was estimated in order to determine the photodegradation efficiency of the molybdenum-doped TiO2 hybrid nanoparticles in the treatment of pharmaceutical effluents. It was found that molybdenum-doped TiO2 hybrid nanoparticles showed higher photocatalytic efficiency than untreated TiO2 nanoparticles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Layered organic inorganic hybrids based on perovskite-derived alkylammonium lead halides have been demonstrated as important new materials in the construction of molecular electronic devices. Typical of this class of materials are the single-perovskite slab lead iodides of the general formula (CnH2n+1NH3)(2)PbI4. While for small n, these compounds are amenable to single-crystal structure determination, the increasing degree of disorder in the long chain (n = 12,14...) compounds makes such an analysis difficult. In this study, we use powder X-ray diffraction, and vibrational and C-13 NMR spectroscopies to establish the conformation, orientation and organization of hydrocarbon chains in the series of layered alkylammonium lead iodides (CnH2n+1NH3)(2)PbI4 (n = 12,16,18). We find that the alkyl chains adopt a tilted bilayer arrangement, while the structure of the inorganic layer remains invariant with respect to the value of n. Conformation-sensitive methylene stretching modes in the infrared and Raman spectra, as well as the C-13 NMR spectra indicate that bonds in the methylene chain are in trans configuration. The skeletal modes of the alkyl chain in the Raman spectra establish that there is a high degree of all-trans conformational registry for the values of n studied here. From the orientation dependence of the infrared spectra of crystals of (CnH2n+1NH3)(2)PbI4 ( n = 12,16), we find that the molecular axis of the all-trans alkyl chains are tilted away from the interlayer normal by an angle of 55degrees. This value of this tilt angle is consistent with the dependence of the c lattice expansion as a function of n, as determined from powder X-ray diffraction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flexible and thermally stable, freestanding hybrid organic/inorganic based polymer-composite films have been fabricated using a simple solution casting method. Polyvinylbutyral and amine functionalized mesoporous silica were used to synthesize the composite. An additional polyol-''tripentaerythritol''-component was also used to increase the -OH group content in the composite matrix. The moisture permeability of the composites was investigated by following a calcium degradation test protocol. This showed a reduction in the moisture permeability with the increase in functionalized silica loadings in the matrix. A reduction in permeability was observed for the composites as compared to the neat polymer film. The thermal and mechanical properties of these composites were also investigated by various techniques like thermogravimetric analysis, differential scanning calorimetry, tensile experiments, and dynamic mechanical analysis. It was observed that these properties detonate with the increase in the functionalized silica content and hence an optimized loading is required in order to retain critical properties. This deterioration is due to the aggregation of the fillers in the matrix. Furthermore, the films were used to encapsulate P3HT (poly 3 hexyl thiophene) based organic Schottky structured diodes, and the diode characteristics under accelerated aging conditions were studied. The weathered diodes, encapsulated with composite film showed an improvement in the lifetime as compared to neat polymer film. The initial investigation of these films suggests that they can be used as a moisture barrier layer for organic electronics encapsulation application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the synthesis and application Cu3BiS3 nanorods in infrared photodectection. Cu3BiS3 nano rods were characterized structurally, optically and electrically. The detailed IR photodectection properties in terms of photo response were demonstrated with IA lamp and 1064 nm laser illuminations. The rapid photocurrent time constants followed by the slower components, resulting due to the defect states. The photo detecting properties for different concentrations of nanorods blended with the conjugate polymer devices were demonstrated. Further the photocurrent was enhanced to threefold increase from 3.47 x 10(-7) A to 2.37 x 10(-3) A at 1 V for 10 mg nanorods embedded in the polymer device. Responsivity of hybrid device was enhanced from 0.0158 NW to 102 NW. The detailed trap assisted space charge transport properties were studied considering the different regimes. Hence Cu3BiS3 can be a promising candidate in the nano switchable near IA photodetectors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Pt-transition metal (TM) alloy catalysts, the electron transfer from the TM to Pt is retarded owing to the inevitable oxidation of the TM surface by oxygen. In addition, acidic electrolytes such as those employed in fuel cells accelerate the dissolution of the surface TM oxide, which leads to catalyst degradation. Herein, we propose a novel synthesis strategy that selectively modifies the electronic structure of surface Co atoms with N-containing polymers, resulting in highly active and durable PtCo nanoparticle catalysts useful for the oxygen reduction reaction (ORR). The polymer, which is functionalized on carbon black, selectively interacts with the Co precursor, resulting in Co-N bond formation on the PtCo nanoparticle surface. Electron transfer from Co to Pt in the PtCo nanoparticles modified by the polymer is enhanced by the increase in the difference in electronegativity between Pt and Co compared with that in bare PtCo nanoparticles with the TM surface oxides. In addition, the dissolution of Co and Pt is prevented by the selective passivation of surface Co atoms and the decrease in the O-binding energy of surface Pt atoms. As a result, the catalytic activity and durability of PtCo nanoparticles for the ORR are significantly improved by the electronic ensemble effects. The proposed organic/inorganic hybrid concept will provide new insights into the tuning of nanomaterials consisting of heterogeneous metallic elements for various electrochemical and chemical applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An organic-inorganic composite material is obtained by self-assembly of 2,3-didecyloxy-anthracene (DDOA), an organogelator of butanol, and organic-capped ZnO nanoparticles (NPs). The ligand 3, 2,3-di(6-oxy-n-hexanoic acid)-anthracene, designed to cap ZnO and interact with the DDOA nanofibers by structural similarity, improves the dispersion of the NPs into the organogel. The composite material displays mechanical properties similar to those of the pristine DDOA organogel, but gelates at a lower critical concentration and emits significantly less, even in the presence of very small amounts of ZnO NPs. The ligand 3 could also act as a relay to promote the photo-induced quenching process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Organic/inorganic hybrid gels have been developed in order to control the three-dimensional structure of photoactive nanofibers and metallic nanoparticles (NPs). These materials are prepared by simultaneous self-assembly of the 2,3-didecyloxyanthracene (DDOA) gelator and of thiol-capped gold nanoparticles (AuNPs). TEM and fluorescence measurements show that alkane-thiol capped AuNPs are homogeneously dispersed and tightly attached to the thermoreversible fibrillar network formed by the organogelator in n-butanol or n-decanol. Rheology and thermal stability measurements reveal moreover that the mechanical and thermal stabilities of the DDOA organogels are not significantly altered and that they remain strong, viscoelastic materials. The hybrid materials display a variable absorbance in the visible range because of the AuNPs, whereas the strong luminescence of the DDOA nanofibers is efficiently quenched by micromolar amounts of AuNPs. Besides, we obtained hybrid aerogels using supercritical CO2. These arc very low-density porous materials showing fibrillar networks oil which fluorinated gold NPs arc dispersed. These hybrid materials are of high interest because of their tunable optical properties and are under investigation for efficient light scattering.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The thermally driven Structural phase transition in the organic-inorganic hybrid perovskite (CnH2n+1NH3)(2)PbI4 has been investigated using molecular dynamics (MD) simulations. This system consists of positively charged alkyl-amine chains anchored to a rigid negatively charged PbI4 sheet with the chains organized as bilayers with a herringbone arrangement. Atomistic simulations were performed using ail isothermal-isobaric ensemble over a wide temperature range from 65 to 665 K for different alkyl chain lengths, n = 12, 14, 16, and 18. The simulations are able to reproduce the essential Features of the experimental observations of this system, including the existence of a transition, the linear variation of the transition temperature with alkyl chain length, and the expansion of the bilayer thickness at the transition. By use of the distance fluctuation Criteria, it is Shown that the transition is associated With a Melting of the alkyl chains of the anchored bilayer. Ail analysis of the conformation of the alkyl chains shows increased disorder in the form of gauche defects above due melting transition. Simulations also show that the melting transition is characterized by the complete disappearance of all-trans alkyl chains in the anchored bilayer, in agreement with experimental observations. A conformationally disordered chain has a larger effective cross-sectional area, and above due transition a uniformly tilted arrangement of the anchored chains call no longer be Sustained. At the melt the angular distribution of the orientation of the chains are 110 longer uniform; the chains are splayed allowing for increased space for individual chains of the anchored bilayer. This is reflected in a sharp rise in the ratio of the mean head-to-head to tail-to-tail distance of the chains of the bilayer at the transition resulting in in expansion of the bilayer thickness. The present MD simulations provide a simple explanation as to how changes in conformation of individual alkyl-chains gives rise to the observed increase in the interlayer lattice spacing of (CnH2n+1NH3)(2)PbI4 at the melting transition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of long-range heteronuclear couplings, in association with 1H1H scalar couplings and NOE restraints, has acquired growing importance for the determination of the relative stereochemistry, and structural and conformational information of organic and biological molecules. However, the routine use of such couplings is hindered by the inherent difficulties in their measurement. Prior to the advancement in experimental techniques, both long-range homo- and heteronuclear scalar couplings were not easily accessible, especially for very large molecules. The development of a large number of multidimensional NMR experimental methodologies has alleviated the complications associated with the measurement of couplings of smaller strengths. Subsequent application of these methods and the utilization of determined J-couplings for structure calculations have revolutionized this area of research. Problems in organic, inorganic and biophysical chemistry have also been solved by utilizing the short- and long-range heteronuclear couplings. In this minireview, we discuss the advantages and limitations of a number of experimental techniques reported in recent times for the measurement of long-range heteronuclear couplings and a few selected applications of such couplings. This includes the study of medium- to larger-sized molecules in a variety of applications, especially in the study of hydrogen bonding in biological systems. The utilization of these couplings in conjunction with theoretical calculations to arrive at conclusions on the hyperconjugation, configurational analysis and the effect of the electronegativity of the substituents is also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In 2003, Babin et al. theoretically predicted (J. Appl. Phys. 94:4244, 2003) that fabrication of organic-inorganic hybrid materials would probably be required to implement structures with multiple photonic band gaps. In tune with their prediction, we report synthesis of such an inorganic-organic nanocomposite, comprising Cu4O3-CuO-C thin films that experimentally exhibit the highest (of any known material) number (as many as eleven) of photonic band gaps in the near infrared. On contrary to the report by Wang et al. (Appl. Phys. Lett. 84:1629, 2004) that photonic crystals with multiple stop gaps require highly correlated structural arrangement such as multilayers of variable thicknesses, we demonstrate experimental realization of multiple stop gaps in completely randomized structures comprising inorganic oxide nanocrystals (Cu4O3 and CuO) randomly embedded in a randomly porous carbonaceous matrix. We report one step synthesis of such nanostructured films through the metalorganic chemical vapor deposition technique using a single source metalorganic precursor, Cu-4(deaH)(dea)(oAc)(5) a <...aEuro parts per thousand(CH3)(2)CO. The films displaying multiple (4/9/11) photonic band gaps with equal transmission losses in the infrared are promising materials to find applications as multiple channel photonic band gap based filter for WDM technology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of novel organic-inorganic hybrid membranes have been prepared employing Nafion and acid-functionalized meso-structured molecular sieves (MMS) with varying structures and surface area. Acid-functionalized silica nanopowder of surface area 60 m(2)/g, silica meso-structured cellular foam (MSU-F) of surface area 470 m(2)/g and silica meso-structured hexagonal frame network (MCM-41) of surface area 900 m(2)/g have been employed as potential filler materials to form hybrid membranes with Nafion framework. The structural behavior, water uptake, proton conductivity and methanol permeability of these hybrid membranes have been investigated. DMFCs employing Nafion-silica MSU-F and Nafion-silica MCM-41 hybrid membranes deliver peak-power densities of 127 mW/cm(2) and 100 mW/cm(2), respectively; while a peak-power density of only 48 mW/cm(2) is obtained with the DMFC employing pristine recast Nafion membrane under identical operating conditions. The aforesaid characteristics of the hybrid membranes could be exclusively attributed to the presence of pendant sulfonic acid groups in the filler, which provide fairly continuous proton-conducting pathways between filler and matrix in the hybrid membranes facilitating proton transport without any trade-off between its proton conductivity and methanol crossover. (C) 2012 The Electrochemical Society. DOI: 10.1149/2.036211jes] All rights reserved.