182 resultados para One-dimensional model
Resumo:
An attempt has been made here to study the sensitivity of the mean and the turbulence structure of the monsoon trough boundary layer to the choice of the constants in the dissipation equation for two stations Delhi and Calcutta, using one-dimensional atmospheric boundary layer model with e-epsilon turbulence closure. An analytical discussion of the problems associated with the constants of the dissipation equation is presented. It is shown here that the choice of the constants in the dissipation equation is quite crucial and the turbulence structure is very sensitive to these constants. The modification of the dissipation equation adopted by earlier studies, that is, approximating the Tke generation (due to shear and buoyancy production) in the epsilon-equation by max (shear production, shear + buoyancy production), can be avoided by a suitable choice of the constants suggested here. The observed turbulence structure is better simulated with these constants. The turbulence structure simulation with the constants recommended by Aupoix et al (1989) (which are interactive in time) for the monsoon region is shown to be qualitatively similar to the simulation obtained with the constants suggested here, thus implying that no universal constants exist to regulate dissipation rate. Simulations of the mean structure show little sensitivity to the type of the closure parameterization between e-l and e-epsilon closures. However the turbulence structure simulation with e-epsilon closure is far better compared to the e-l model simulations. The model simulations of temperature profiles compare quite well with the observations whenever the boundary layer is well mixed (neutral) or unstable. However the models are not able to simulate the nocturnal boundary layer (stable) temperature profiles. Moisture profiles are simulated reasonably better. With one-dimensional models, capturing observed wind variations is not up to the mark.
Resumo:
We study a system of hard-core boson on a one-dimensional lattice with frustrated next-nearest-neighbor hopping and nearest-neighbor interaction. At half filling, for equal magnitude of nearest- and next-nearest-neighbor hopping, the ground state of this system exhibits a first-order phase transition from a bond-ordered solid to a charge-density-wave solid as a function of the nearest- neighbor interaction. Moving away from half filling we investigate the system at incommensurate densities, where we find a supersolid phase which has concurrent off-diagonal long-range order and density-wave order which is unusual in a system of hard-core bosons in one dimension. Using the finite-size density-matrix renormalization group method, we obtain the complete phase diagram for this model.
Resumo:
We use Floquet theory to study the maximum value of the stroboscopic group velocity in a one-dimensional tight-binding model subjected to an on-site staggered potential varying sinusoidally in time. The results obtained by numerically diagonalizing the Floquet operator are analyzed using a variety of analytical schemes. In the low-frequency limit we use adiabatic theory, while in the high-frequency limit the Magnus expansion of the Floquet Hamiltonian turns out to be appropriate. When the magnitude of the staggered potential is much greater or much less than the hopping, we use degenerate Floquet perturbation theory; we find that dynamical localization occurs in the former case when the maximum group velocity vanishes. Finally, starting from an ``engineered'' initial state where the particles (taken to be hard-core bosons) are localized in one part of the chain, we demonstrate that the existence of a maximum stroboscopic group velocity manifests in a light-cone-like spreading of the particles in real space.
Resumo:
We report our findings on the quantum phase transitions in cold bosonic atoms in a one-dimensional optical lattice using the finite-size density-matrix renormalization-group method in the framework of the extended Bose-Hubbard model. We consider wide ranges of values for the filling factors and the nearest-neighbor interactions. At commensurate fillings, we obtain two different types of charge-density wave phases and a Mott insulator phase. However, departure from commensurate fillings yields the exotic supersolid phase where both the crystalline and the superfluid orders coexist. In addition, we obtain the signatures for the solitary waves and the superfluid phase.
Resumo:
We use the Density Matrix Renormalization Group and the Abelian bosonization method to study the effect of density on quantum phases of one-dimensional extended Bose-Hubbard model. We predict the existence of supersolid phase and also other quantum phases for this system. We have analyzed the role of extended range interaction parameters on solitonic phase near half-filling. We discuss the effects of dimerization in nearest neighbor hopping and interaction as well as next nearest neighbor interaction on the plateau phase at half-filling.
Resumo:
We consider a one-dimensional Hubbard model in the presence of disorder. We compute the charge stiffness for a mesoscopic ring as a function of the size L, which is a measure of the persistent currents. We find that for finite disorder the persistent currents of the system with repulsive interactions are larger than those of the system with attractive interactions. This counterintuitive result is due to the fact that local-density fluctuations are reduced in the presence of repulsive interactions.
Resumo:
We study the scaling behavior of the fidelity (F) in the thermodynamic limit using the examples of a system of Dirac fermions in one dimension and the Kitaev model on a honeycomb lattice. We show that the thermodynamic fidelity inside the gapless as well as gapped phases follow power-law scalings, with the power given by some of the critical exponents of the system. The generic scaling forms of F for an anisotropic quantum critical point for both the thermodynamic and nonthermodynamic limits have been derived and verified for the Kitaev model. The interesting scaling behavior of F inside the gapless phase of the Kitaev model is also discussed. Finally, we consider a rotation of each spin in the Kitaev model around the z axis and calculate F through the overlap between the ground states for the angle of rotation eta and eta + d eta, respectively. We thereby show that the associated geometric phase vanishes. We have supplemented our analytical calculations with numerical simulations wherever necessary.
Resumo:
We study the scaling behavior of the fidelity (F) in the thermodynamic limit using the examples of a system of Dirac fermions in one dimension and the Kitaev model on a honeycomb lattice.We show that the thermodynamic fidelity inside the gapless as well as gapped phases follow power-law scalings, with the power given by some of the critical exponents of the system. The generic scaling forms of F for an anisotropic quantum critical point for both the thermodynamic and nonthermodynamic limits have been derived and verified for the Kitaev model. The interesting scaling behavior of F inside the gapless phase of the Kitaev model is also discussed. Finally, we consider a rotation of each spin in the Kitaev model around the z axis and calculate F through the overlap between the ground states for the angle of rotation η and η + dη, respectively. We thereby show that the associated geometric phase vanishes. We have supplemented our analytical calculations with numerical simulations wherever necessary
Resumo:
Spin-density maps, deduced from polarized neutron diffraction experiments, for both the pair and chain compounds of the system Mn2+Cu2+ have been reported recently. These results have motivated us to investigate theoretically the spin populations in such alternant mixed-spin systems. In this paper, we report our studies on the one-dimensional ferrimagnetic systems (S-A,S-B)(N) where hi is the number of AB pairs. We have considered all cases in which the spin Sri takes on allowed values in the range I to 7/2 while the spin S-B is held fixed at 1/2. The theoretical studies have been carried out on the isotropic Heisenberg model, using the density matrix renormalization group method. The effect of the magnitude of the larger spin SA On the quantum fluctuations in both A and B sublattices has been studied as a function of the system size N. We have investigated systems with both periodic and open boundary conditions, the latter with a view to understanding end-of-chain effects. The spin populations have been followed as a function of temperature as well as an applied magnetic field. High-magnetic fields are found to lead to interesting re-entrant behavior. The ratio of spin populations P-A-P-B is not sensitive to temperature at low temperatures.
Resumo:
This paper is concerned the calculation of flame structure of one-dimensional laminar premixed flames using the technique of operator-splitting. The technique utilizes an explicit method of solution with one step Euler for chemistry and a novel probabilistic scheme for diffusion. The relationship between diffusion phenomenon and Gauss-Markoff process is exploited to obtain an unconditionally stable explicit difference scheme for diffusion. The method has been applied to (a) a model problem, (b) hydrazine decomposition, (c) a hydrogen-oxygen system with 28 reactions with constant Dρ 2 approximation, and (d) a hydrogen-oxygen system (28 reactions) with trace diffusion approximation. Certain interesting aspects of behaviour of the solution with non-unity Lewis number are brought out in the case of hydrazine flame. The results of computation in the most complex case are shown to compare very favourably with those of Warnatz, both in terms of accuracy of results as well as computational time, thus showing that explicit methods can be effective in flame computations. Also computations using the Gear-Hindmarsh for chemistry and the present approach for diffusion have been carried out and comparison of the two methods is presented.
Resumo:
We study a model of fermions hopping on a chain with a weak incommensuration close to dimerization; both q, the deviation of the wave number from pi, and delta, the strength of the incommensuration, are assumed to be small. For free fermions, we show that there are an infinite number of energy bands which meet at zero energy as q approaches zero. The number of states lying inside the q = 0 gap remains nonzero as q/delta --> 0. Thus the limit q --> 0 differs from q = 0, as can be seen clearly in the low-temperature specific heat. For interacting fermions or the XXZ spin-(1/2) chain, we use bosonization to argue that similar results hold. Finally, our results can be applied to the Azbel-Hofstadter problem of particles hopping on a two-dimensional lattice in the presence of a magnetic field.
Resumo:
The potential of Bi2CuO4 as the first oxide system to show a linear-chain magnetic behaviour is examined. Electron diffraction studies do not resolve the previously reported ambiguity regarding its space group. The magnetic susceptibility data at high temperatures are best fitted to a uniform antiferromagnetic spin-1/2 Heisenberg chain. At low temperatures, however, neither the uniform nor the alternating Heisenberg antiferromagnetic model fits the data. Magnetic susceptibility data over the entire temperature range can be fitted if one assumes dimeric units with a nearly degenerate second singlet state close to the ground state, these states being separated from an excited triplet state by an energy gap. A simple heuristic model of a dimer that gives such an energy level spectrum is examined.
Resumo:
We present the exact solution to a one-dimensional multicomponent quantum lattice model interacting by an exchange operator which falls off as the inverse sinh square of the distance. This interaction contains a variable range as a parameter and can thus interpolate between the known solutions for the nearest-neighbor chain and the inverse-square chain. The energy, susceptibility, charge stiffness, and the dispersion relations for low-lying excitations are explicitly calculated for the absolute ground state, as a function of both the range of the interaction and the number of species of fermions.
Resumo:
We consider a one-dimensional mesoscopic Hubbard ring with and without disorder and compute charge and spin stiffness as a measure of the permanent currents. For finite disorder we identify critical disorder strength beyond which the charge currents in a system with repulsive interactions are larger than those for a free system. The spin currents in the disordered repulsive Hubbard model are enhanced only for small U, where the magnetic state of the system corresponds to a charge-density wave pinned to the impurities. For large U, the state of the system corresponds to localized isolated spins and the spin currents are found to be suppressed. For the attractive Hubbard model we find that the charge currents are always suppressed compared to the free system at all length scales.
Resumo:
We report the optical spectra and single crystal magnetic susceptibility of the one-dimensional antiferromagnet KFeS2. Measurements have been carried out to ascertain the spin state of Fe3+ and the nature of the magnetic interactions in this compound. The optical spectra and magnetic susceptibility could be consistently interpreted using a S = 1/2 spin ground state for the Fe3+ ion. The features in the optical spectra have been assigned to transitions within the d-electron manifold of the Fe3+ ion, and analysed in the strong field limit of the ligand field theory. The high temperature isotropic magnetic susceptibility is typical of a low-dimensional system and exhibits a broad maximum at similar to 565 K. The susceptibility shows a well defined transition to a three dimensionally ordered antiferromagnetic state at T-N = 250 K. The intra and interchain exchange constants, J and J', have been evaluated from the experimental susceptibilities using the relationship between these quantities, and chi(max), T-max, and T-N for a spin 1/2 one-dimensional chain. The values are J = -440.71 K, and J' = 53.94 K. Using these values of J and J', the susceptibility of a spin 1/2 Heisenberg chain was calculated. A non-interacting spin wave model was used below T-N. The susceptibility in the paramagnetic region was calculated from the theoretical curves for an infinite S = 1/2 chain. The calculated susceptibility compares well with the experimental data of KFeS2. Further support for a one-dimensional spin 1/2 model comes from the fact that the calculated perpendicular susceptibility at 0K (2.75 x 10(-4) emu/mol) evaluated considering the zero point reduction in magnetization from spin wave theory is close to the projected value (2.7 x 10(-4) emu/mol) obtained from the experimental data.