204 resultados para ORDER-STATISTICS
Resumo:
Direction Of Arrival (DOA) estimation, using a sensor array, in the presence of non-Gaussian noise using Fractional Lower-Order Moments (FLOM)matrices is studied. In this paper, a new FLOM based technique using the Fractional Lower Order Infinity Norm based Covariance (FLIC) Matrix is proposed. The bounded property and the low-rank subspace structure of the FLIC matrix is derived. Performance of FLIC based DOA estimation using MUSIC, ESPRIT, is shown to be better than other FLOM based methods.
Resumo:
The complex perovskite oxide SrRuO3 shows intriguing transport properties at low temperatures due to the interplay of spin, charge, and orbital degrees of freedom. One of the open questions in this system is regarding the origin and nature of the low-temperature glassy state. In this paper we report on measurements of higher-order statistics of resistance fluctuations performed in epitaxial thin films of SrRuO3 to probe this issue. We observe large low-frequency non-Gaussian resistance fluctuations over a certain temperature range. Our observations are compatible with that of a spin-glass system with properties described by hierarchical dynamics rather than with that of a simple ferromagnet with a large coercivity.
Resumo:
We focus on athermal phase transitions where in discrete and dissipative avalanches are observed in physical observables as the system jumps from one metastable state to another, when driven by an external field. Using higher order statistics of time dependent avalanches, or noise, in electrical resistivity during temperature-driven martensite transformation in thin nickel-titanium films, we demonstrate evidence suggesting the existence of a singular `global instability' or divergence of the correlation length as a function of temperature at the transition. These results not only establish a mapping of non-equilibrium first order phase transition and equilibrium critical phenomena, but perhaps also call for a re-evaluation of many existing experimental claims of self-organized criticality.
Resumo:
Low frequency fluctuations in the electrical resistivity, or noise, have been used as a sensitive tool to probe into the temperature driven martensite transition in dc magnetron sputtered thin films of nickel titanium shape-memory alloys. Even in the equilibrium or static case, the noise magnitude was more than nine orders of magnitude larger than conventional metallic thin films and had a characteristic dependence on temperature. We observe that the noise while the temperature is being ramped is far larger as compared to the equilibrium noise indicating the sensitivity of electrical resistivity to the nucleation and propagation of domains during the shape recovery. Further, the higher order statistics suggests the existence of long range correlations during the transition. This new characterization is based on the kinetics of disorder in the system and separate from existing techniques and can be integrated to many device applications of shape memory alloys for in-situ shape recovery sensing.
Resumo:
Driven nonequilibrium structural phase transformation has been probed using time-varying resistance fluctuations or noise. We demonstrate that the non-Gaussian component (NGC) of noise obtained by evaluating the higher-order statistics of fluctuations, serves as a simple kinetic detector of these phase transitions. Using the Martensite transformation in free-standing wires of nickel-titanium binary alloys as a prototype, we observe clear deviations from the Gaussian background in the transformation zone, indicative of the long-range correlations in the system as the phase transforms. The viability of non-Gaussian statistics as a robust probe to structural phase transition was also confirmed by comparing the results from differential scanning calorimetry measurements. We further studied the response of the NGC to the modifications in the microstructure on repeated thermal cycling, as well as the variations in the temperature-drive rate, and explained the results using established simplistic models based on the different competing time scales. Our experiments (i) suggest an alternative method to estimate the transformation temperature scales with high accuracy and (ii) establish a connection between the material-specific evolution of microstructure to the statistics of its linear response. Since the method depends on an in-built long-range correlation during transformation, it could be portable to other structural transitions, as well as to materials of different physical origin and size.
Resumo:
The impulse response of a typical wireless multipath channel can be modeled as a tapped delay line filter whose non-zero components are sparse relative to the channel delay spread. In this paper, a novel method of estimating such sparse multipath fading channels for OFDM systems is explored. In particular, Sparse Bayesian Learning (SBL) techniques are applied to jointly estimate the sparse channel and its second order statistics, and a new Bayesian Cramer-Rao bound is derived for the SBL algorithm. Further, in the context of OFDM channel estimation, an enhancement to the SBL algorithm is proposed, which uses an Expectation Maximization (EM) framework to jointly estimate the sparse channel, unknown data symbols and the second order statistics of the channel. The EM-SBL algorithm is able to recover the support as well as the channel taps more efficiently, and/or using fewer pilot symbols, than the SBL algorithm. To further improve the performance of the EM-SBL, a threshold-based pruning of the estimated second order statistics that are input to the algorithm is proposed, and its mean square error and symbol error rate performance is illustrated through Monte-Carlo simulations. Thus, the algorithms proposed in this paper are capable of obtaining efficient sparse channel estimates even in the presence of a small number of pilots.
Resumo:
Flexible cantilever pipes conveying fluids with high velocity are analysed for their dynamic response and stability behaviour. The Young's modulus and mass per unit length of the pipe material have a stochastic distribution. The stochastic fields, that model the fluctuations of Young's modulus and mass density are characterized through their respective means, variances and autocorrelation functions or their equivalent power spectral density functions. The stochastic non self-adjoint partial differential equation is solved for the moments of characteristic values, by treating the point fluctuations to be stochastic perturbations. The second-order statistics of vibration frequencies and mode shapes are obtained. The critical flow velocity is-first evaluated using the averaged eigenvalue equation. Through the eigenvalue equation, the statistics of vibration frequencies are transformed to yield critical flow velocity statistics. Expressions for the bounds of eigenvalues are obtained, which in turn yield the corresponding bounds for critical flow velocities.
Resumo:
This paper presents a novel Second Order Cone Programming (SOCP) formulation for large scale binary classification tasks. Assuming that the class conditional densities are mixture distributions, where each component of the mixture has a spherical covariance, the second order statistics of the components can be estimated efficiently using clustering algorithms like BIRCH. For each cluster, the second order moments are used to derive a second order cone constraint via a Chebyshev-Cantelli inequality. This constraint ensures that any data point in the cluster is classified correctly with a high probability. This leads to a large margin SOCP formulation whose size depends on the number of clusters rather than the number of training data points. Hence, the proposed formulation scales well for large datasets when compared to the state-of-the-art classifiers, Support Vector Machines (SVMs). Experiments on real world and synthetic datasets show that the proposed algorithm outperforms SVM solvers in terms of training time and achieves similar accuracies.
Resumo:
In this paper, we present a fast learning neural network classifier for human action recognition. The proposed classifier is a fully complex-valued neural network with a single hidden layer. The neurons in the hidden layer employ the fully complex-valued hyperbolic secant as an activation function. The parameters of the hidden layer are chosen randomly and the output weights are estimated analytically as a minimum norm least square solution to a set of linear equations. The fast leaning fully complex-valued neural classifier is used for recognizing human actions accurately. Optical flow-based features extracted from the video sequences are utilized to recognize 10 different human actions. The feature vectors are computationally simple first order statistics of the optical flow vectors, obtained from coarse to fine rectangular patches centered around the object. The results indicate the superior performance of the complex-valued neural classifier for action recognition. The superior performance of the complex neural network for action recognition stems from the fact that motion, by nature, consists of two components, one along each of the axes.
Resumo:
Chebyshev-inequality-based convex relaxations of Chance-Constrained Programs (CCPs) are shown to be useful for learning classifiers on massive datasets. In particular, an algorithm that integrates efficient clustering procedures and CCP approaches for computing classifiers on large datasets is proposed. The key idea is to identify high density regions or clusters from individual class conditional densities and then use a CCP formulation to learn a classifier on the clusters. The CCP formulation ensures that most of the data points in a cluster are correctly classified by employing a Chebyshev-inequality-based convex relaxation. This relaxation is heavily dependent on the second-order statistics. However, this formulation and in general such relaxations that depend on the second-order moments are susceptible to moment estimation errors. One of the contributions of the paper is to propose several formulations that are robust to such errors. In particular a generic way of making such formulations robust to moment estimation errors is illustrated using two novel confidence sets. An important contribution is to show that when either of the confidence sets is employed, for the special case of a spherical normal distribution of clusters, the robust variant of the formulation can be posed as a second-order cone program. Empirical results show that the robust formulations achieve accuracies comparable to that with true moments, even when moment estimates are erroneous. Results also illustrate the benefits of employing the proposed methodology for robust classification of large-scale datasets.
Resumo:
We propose a novel space-time descriptor for region-based tracking which is very concise and efficient. The regions represented by covariance matrices within a temporal fragment, are used to estimate this space-time descriptor which we call the Eigenprofiles(EP). EP so obtained is used in estimating the Covariance Matrix of features over spatio-temporal fragments. The Second Order Statistics of spatio-temporal fragments form our target model which can be adapted for variations across the video. The model being concise also allows the use of multiple spatially overlapping fragments to represent the target. We demonstrate good tracking results on very challenging datasets, shot under insufficient illumination conditions.
Resumo:
Interaction between the lattice and the orbital degrees of freedom not only makes rare-earth nickelates unusually ``bad metal,'' but also introduces a temperature-driven insulator-metal phase transition. Here we investigate this insulator-metal phase transition in thin films of SmNiO3 using the slow time-dependent fluctuations (noise) in resistivity. The normalized magnitude of noise is found to be extremely large, being nearly eight orders of magnitude higher than thin films of common disordered metallic systems, and indicates electrical conduction via classical percolation in a spatially inhomogeneous medium. The higher-order statistics of the fluctuations indicate a strong non-Gaussian component of noise close to the transition, attributing the inhomogeneity to the coexistence of the metallic and insulating phases. Our experiment offers insight into the impact of lattice-orbital coupling on the microscopic mechanism of electron transport in the rare-earth nickelates.
Resumo:
We study the statistical properties of orientation and rotation dynamics of elliptical tracer particles in two-dimensional, homogeneous, and isotropic turbulence by direct numerical simulations. We consider both the cases in which the turbulent flow is generated by forcing at large and intermediate length scales. We show that the two cases are qualitatively different. For large-scale forcing, the spatial distribution of particle orientations forms large-scale structures, which are absent for intermediate-scale forcing. The alignment with the local directions of the flow is much weaker in the latter case than in the former. For intermediate-scale forcing, the statistics of rotation rates depends weakly on the Reynolds number and on the aspect ratio of particles. In contrast with what is observed in three-dimensional turbulence, in two dimensions the mean-square rotation rate increases as the aspect ratio increases.
Resumo:
With the use of tensor analysis and the method of singular surfaces, an infinite system of equations can be derived to study the propagation of curved shocks of arbitrary strength in gas dynamics. The first three of these have been explicitly given here. This system is further reduced to one involving scalars only. The choice of dependent variables in the infinite system is quite important, it leads to coefficients free from singularities for all values of the shock strength.
Resumo:
We consider some non-autonomous second order Cauchy problems of the form u + B(t)(u) over dot + A(t)u = f (t is an element of [0, T]), u(0) = (u) over dot(0) = 0. We assume that the first order problem (u) over dot + B(t)u = f (t is an element of [0, T]), u(0) = 0, has L-p-maximal regularity. Then we establish L-p-maximal regularity of the second order problem in situations when the domains of B(t(1)) and A(t(2)) always coincide, or when A(t) = kappa B(t).