72 resultados para OPTICAL GAIN SPECTRA


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Optically clear glasses of various compositions in the system (100-x) TeO2-x(1.5K(2)O-Li2O-2.5Nb(2)O(5)) (2 <= x <= 12, in molar ratio) were prepared by the melt-quenching technique. The glassy nature of the as-quenched samples was established via differential scanning calorimetry (DSC). The amorphous and the crystalline nature of the as-quenched and heat-treated samples were confirmed by the X-ray powder diffraction and transmission electron microscopic (TEM) studies. Transparent glasses comprising potassium lithium niobate (K3Li2Nb5O15) microcrystallites on the surface and nanocrystallites within the glass were obtained by controlled heat-treatment of the as-quenched glasses just above the glass transition temperature (T-g). The optical transmission spectra of these glasses and glass-crystal composites of various compositions were recorded in the 200-2500 nm wavelength range. Various optical parameters such as optical band gap, Urbach energy, refractive index were determined. Second order optical non-linearity was established in the heat-treated samples by employing the Maker-Fringe method.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The influence of Lorentz and Doppler line-broadening mechanisms on the small-signal optical gain of lasers and, in particular, gasdynamic lasers, is discussed. A relationship between the critical parameter reflecting the line-broadening mechanisms and some of the important parameters arising out of the gain optimization studies in CO2-N2 gasdynamic lasers is established. Using this relationship, methods by which the deleterious effect of the Doppler mechanisms on small-signal gain can be suppressed are suggested. Journal of Applied Physics is copyrighted by The American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Based on a method proposed by Reddy and Shanmugasundaram, similar solutions have been obtained for the steady inviscid quasi-one-dimensional nonreacting flow in the supersonic nozzle of CO2-N2-H2O and CO2-N2-He gasdynamic laser systems. Instead of using the correlations of a nonsimilar function NS for pure N2 gas, as is done in previous publications, the NS correlations are computed here for the actual gas mixtures used in the gasdynamic lasers. Optimum small-signal optical gain and the corresponding optimum values of the operating parameters like reservoir pressure and temperature and nozzle area ratio are computed using these correlations. The present results are compared with the previous results and the main differences are discussed. Journal of Applied Physics is copyrighted by The American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Based on a method proposed by Reddy and Shanmugasundaram, similar solutions have been obtained for the steady inviscid quasi‐one‐dimensional nonreacting flow in the supersonic nozzle of CO2–N2–H2O and CO2–N2–He gasdynamic laser systems. Instead of using the correlations of a nonsimilar function NS for pure N2 gas, as is done in previous publications, the NS correlations are computed here for the actual gas mixtures used in the gasdynamic lasers. Optimum small‐signal optical gain and the corresponding optimum values of the operating parameters like reservoir pressure and temperature and nozzle area ratio are computed using these correlations. The present results are compared with the previous results and the main differences are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In present work, a systematic study has been carried out to understand the influence of source concentration on structural and optical properties of the SnO2 nanoparticles. SnO2 nanoparticles have been prepared by using chemical precipitation method at room temperature with aqueous ammonia as a stabilizing agent. X-ray diffraction analysis reveals that SnO2 nanoparticles exhibit tetragonal structure and the particle size is in range of 4.9-7.6 nm. High resolution transmission electron microscopic image shows that all the particles are nearly spherical in nature and particle size lies in range of 4.6-7 nm. Compositional analysis indicates the presence of Sn and O in samples. Blue shift has been observed in optical absorption spectra due to quantum confinement and the bandgap is in range of 4-4.16 eV. The origin of photoluminescence in SnO2 is found to be due to recombination of electrons in singly occupied oxygen vacancies with photo-excited holes in valance band.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Eu3+-activated layered BiOCl phosphors were synthesized by the conventional solid-state method at relatively low temperature and shorter duration (400 degrees C for 1 h). All the samples were crystallized in the tetragonal structure with the space group P4/nmm (no. 129). Field emission scanning electron microscopy (FE-SEM) studies confirmed the plate-like morphology. Photoluminescence spectra exhibit characteristic luminescent D-5(0) -> F-7(J) (J = 0-4) intra-4f shell Eu3+ ion transitions. The electric dipole transition located at 620 nm (D-5(0) -> F-7(2)) was stronger than the magnetic dipole transition located at 594 nm (D-5(0) -> F-7(1)). The evaluated Commission International de l'Eclairage (CIE) color coordinates of Eu3+-activated BiOCl phosphors were close to the commercial Y2O3:Eu3+ and Y2O2S:Eu3+ red phosphors. Intensity parameters (Omega(2), Omega(4)) and various radiative properties such as transition probability (A(tot)), radiative lifetime (tau(rad)), stimulated emission cross-section (sigma(e)), gain bandwidth (sigma(e) x Delta lambda(eff)) and optical gain (sigma(e) x tau(rad)) were calculated using the Judd-Ofelt theory. The experimental decay curves of the D-5(0) level in Eu3+-activated BiOCl have a single exponential profile. In comparison with other Eu3+ doped materials, Eu3+-activated BiOCl phosphors have a long lifetime (tau(exp)), low non-radiative relaxation rate (W-NR), high quantum efficiency (eta) and better optical gain (sigma(e) x tau(rad)). The determined radiative properties revealed the usefulness of Eu3+-activated BiOCl in developing red lasers as well as optical display devices. Further, these samples showed efficient photocatalytic activity for the degradation of rhodamine B (RhB) dye under visible light irradiation. These photocatalysts are useful for the removal of toxic and non-biodegradable organic pollutants in water.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A series of Bi1-xEuxOX (X = F and Br; x = 0, 0.01, 0.03 and 0.05) phosphors were synthesized at relatively low temperature and short duration (500 degrees C, 1 h). Rietveld refinement results verified that all the compounds were crystallized in the tetragonal structure with space group P4/nmm (no. 129). Photoluminescence spectra exhibit characteristic luminescence D-5(0) -> F-7(J) (J = 0-4) intra-4f shell Eu3+ ion transitions. The magnetic dipole (D-5(0) -> F-7(1)) transition dominates the emission of BiOF:Eu3+, while the electric dipole (D-5(0) -> F-7(2)) peak was stronger in BiOBr:Eu3+ phosphors. The evaluated CIE color coordinates for Bi0.95Eu0.05OBr (0.632, 0.358) are close to the commercial Y2O3:Eu3+ (0.645, 0.347) and Y2O2S:Eu3+ (0.647, 0.343) red phosphors. Intensity parameters (Omega(2), Omega(4)) and various radiative properties such as transition rates (A), branching ratios (beta), stimulated emission cross-section (sigma(e)), gain bandwidth (sigma(e) x Delta lambda(eff)) and optical gain (sigma(e) x tau) were calculated using the Judd-Ofelt theory. It was observed that BiOBr:Eu3+ phosphors have a long lifetime (tau) and better optical gain (sigma(e) x tau) as compared to reported Eu3+ doped materials. Furthermore, these compounds exhibit excellent photocatalytic activity for the degradation of rhodamine B dye under visible light irradiation. The determined radiative properties and photocatalytic results revealed that BiOBr:Eu3+ phosphors have potential applications in energy and environmental remedies, such as to develop red phosphors for white light-emitting diodes, red lasers and to remove toxic organic industrial effluents.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The photo-induced effects of Ge12Sb25S63 films illuminated with 532 nm laser light are investigated from transmission spectra measured by FTIR spectroscopy. The material exhibits photo-bleaching (PB) when exposed to band gap light for a prolonged time in a vacuum. The PB is ascribed to structural changes inside the film as well as surface photooxidation. The amorphous nature of thin films was detected by x-ray diffraction. The chemical composition of the deposited thin films was examined by energy dispersive x-ray analysis (EDAX). The refractive indices of the films were obtained from the transmission spectra based on an inverse synthesis method and the optical band gaps were derived from optical absorption spectra using the Tauc plot. The dispersion of the refractive index is discussed in terms of the single-oscillator Wemple-DiDomenico model. It was found that the mechanism of the optical absorption follows the rule of the allowed non-direct transition. Raman and x-ray photoelectron spectra (XPS) were measured and decomposed into several peaks that correspond to the different structural units which support the optical changes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thin films of SbxSe60-xS40( x= 10, 20, 30, and 40) were deposited by thermal evaporation from the prepared bulk materials on glass substrates held at room temperature. The film compositions were confirmed by using energy dispersive X-ray spectroscopy. X-ray diffraction studies revealed that all the as- deposited films have amorphous structure. The optical constants ( n, k, E-g, E-e, B-1/2) of the films were determined from optical transmittance data, in the spectral range 500-1200 nm, using the Swanepoel method. An analysis of the optical absorption spectra revealed an Urbach's tail in the low absorption region, while in the high absorption region an indirect band gap characterizes the films with different compositions. It was found that the optical band gap energy decreases as the Sb content increases. Finally, in terms of the chemical bond approach, degree of disorderness has been applied to interpret the decrease in the optical gap with increasing Sb content in SbxSe60-xS40 thin films. The changes in X-ray photo electron spectra and Raman shift in the films show compositional dependence. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Eu3+-activated BaMoO4 phosphors were synthesized by the nitrate citrate gel combustion method. The Rietveld refinement analysis confirmed that all the compounds were crystallized in the scheelite-type tetragonal structure with I4(1)/a (No. 88) space group. Photoluminescence (PL) spectra of BaMoO4 phosphor reveals broad emission peaks at 465 and 605 nm, whereas the Eu3+-activated BaMoO4 phosphors show intense 615 nm (D-5(0) -> F-7(2)) emission peak. Judd-Ofelt theory was applied to evaluate the intensity parameters (Omega(2), Omega(4)) of Eu3+-activated BaMoO4 phosphors. The transition probabilities (A(T)), radiative lifetime (tau(rad)), branching ratio (beta), stimulated emission cross-section (sigma(e)), gain bandwidth (sigma(e) x Delta lambda(eff)) and optical gain (sigma(e) x tau(rad)) were investigated by using the intensity parameters. CIE color coordinates confirmed that the BaMoO4 and Eu3+-activated BaMoO4 phosphors exhibit white and red luminescence, respectively. The obtained results revealed that the present phosphors can be a potential candidate for red lasers and white LEDs applications. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The change in photo-induced optical properties in thermally evaporated Ge12Sb25Se63 chalcogenide thin film under 532-nm laser illumination has been reported in this paper. The structure and composition of the film have been examined by X-ray diffraction and energy dispersive X-ray analysis, respectively. The optical properties such as refractive index, extinction coefficient and thickness of the films have been determined from the transmission spectra based on inverse synthesis method and the optical band gap has been derived from optical absorption spectra using the Tauc plot. It has been found that the mechanism of the optical absorption is due to allowed indirect transition. The optical band gap increases by 0.05 eV causing photo-bleaching mechanism, while refractive index decreases because of reduction in structural disordering. Deconvolution of Raman and X-ray photoelectron spectra into several peaks provides different structural units, which supports the optical photo-bleaching.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transparent glasses in the system 0.5Li(2)O-0.5K(2)O-2B(2)O(3) (LKBO) were fabricated via the conventional melt quenching technique. Amorphous and glassy nature of the samples was confirmed by X-ray diffraction and differential scanning calorimetry (DSC) respectively. Complex dielectric and impedance studies were conducted on the samples at different temperatures in the 100 Hz-10 MHz frequency range. ac conductivity was calculated from the dielectric data and the conductivity relaxation was found to obey the Jonscher's law. The Nyquist's plots (Z `'(omega) vs. Z'(omega)) showed single suppressed semicircles at all the temperatures under study indicating the non ideal Debye type relaxation process to be active. Activation energies for conduction and relaxation process were calculated using the Arrhenius relation. The UV-visible optical transmission spectra was shown a wide transmission window and calculated optical band gap was found to be 5.67 eV.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diamond crystallites were synthesized using various oxygen‐hydrocarbon flames. The flames have been profiled in real time using a nonintrusive diagnostic technique. Optical emission spectra for different zones have been recorded and the active species identified. Diamond growth was observed only in the thermodynamically unequilibriated primary combustion zone of the flames. Carbon‐bearing species, atomic hydrogen, and atomic oxygen, noted to be critical for diamond growth, were observed in the flames. The diamond growth was confirmed by x‐ray diffraction, laser‐Raman analysis, and scanning electron microscopy. The study offers the first insight into the flame spectra in the context of diamond synthesis at atmospheric pressures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Zinc oxide ceramic varistors with simplified compositions of ZnO+Bi2O3+Co3O4+M(2)O (M=K or Na) show nonlinearity coefficients (alpha) of 40-75. The electron paramagnetic resonance spectra and optical reflectance spectra show that there is a direct interdependence between the oxidation state of transition metals and the alkali ions. The X-ray photoelectron spectra indicate that the alkali ions preserve a higher oxidation state of cobalt, Co(III), in the grain boundary regions than in the grain interiors having more Co(II). Admittance spectroscopy shows that, while the nature of traps remains unaltered, the trap density increases with the concentration of alkali ions near the interface. The observed defect states are associated with the grain bulk than with the grain boundary interfaces, as indicated by the isothermal capacitance transient signals

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report high-pressure Raman, infrared (IR), and optical-absorption spectra of alpha-ZrMo2O8 (trigonal) up to 38 GPa at room temperature. The spectroscopic studies are consistent with diffraction results that show that alpha-ZrMo2O8 transforms into delta-ZrMo2O8 (monoclinic) at about 1 GPa and the delta phase converts to the epsilon phase (trielinic) at about 2.0 GPa. Optical-absorption measurements give an estimate of the band gap of about 0.6 eV at the lowest pressure. Band-gap changes with pressure are confirmed with visual observations. ZrMo2O8 changes from transparent at 5 GPa to yellow at 10 GPa, red at 18 GPa, and at about 30 GPa it becomes opaque.