62 resultados para Normal ruling
Resumo:
numerical study of the free energy gap (FEG) dependence of the electron-transfer rate in polar solvents is presented. This study is based on the generalized multidimensional hybrid model, which not only includes the solvent polarization and the molecular vibration modes, but also the biphasic polar response of the solvent. The free energy gap dependence is found to be sensitive to several factors, including the solvent relaxation rate, the electronic coupling between the surfaces, the frequency of the high-frequency quantum vibrational mode, and the magnitude of the solvent reorganization energy. It is shown that in some cases solvent relaxation can play an important role even in the Marcus normal regime. The minimal hybrid model involves a large number of parameters, giving rise to a diverse non-Marcus FEG behavior which is often determined collectively by these parameters. The model gives the linear free energy gap dependence of the logarithmic rate over a substantial range of FEG, spanning from the normal to the inverted regime. However, even for favorable values of the relevant parameters, a linear free energy gap dependence of the rate could be obtained only over a range of 5000-6000 cm(-1) (compared to the experimentally observed range of 10000 cm(-1) reported by Benniston et al.). The present work suggests several extensions/generalizations of the hybrid model which might be necessary to fully understand the observed free energy gap dependence.
Resumo:
The theoretical optimization of the design parametersN A ,N D andW P has been done for efficient operation of Au-p-n Si solar cell including thermionic field emission, dependence of lifetime and mobility on impurity concentrations, dependence of absorption coefficient on wavelength, variation of barrier height and hence the optimum thickness ofp region with illumination. The optimized design parametersN D =5×1020 m−3,N A =3×1024 m−3 andW P =11.8 nm yield efficiencyη=17.1% (AM0) andη=19.6% (AM1). These are reduced to 14.9% and 17.1% respectively if the metal layer series resistance and transmittance with ZnS antireflection coating are included. A practical value ofW P =97.0 nm gives an efficiency of 12.2% (AM1).
Resumo:
We study the renormalization group flows of the two terminal conductance of a superconducting junction of two Luttinger liquid wires. We compute the power laws associated with the renormalization group flow around the various fixed points of this system using the generators of the SU(4) group to generate the appropriate parametrization of an matrix representing small deviations from a given fixed point matrix [obtained earlier in S. Das, S. Rao, and A. Saha, Phys. Rev. B 77, 155418 (2008)], and we then perform a comprehensive stability analysis. In particular, for the nontrivial fixed point which has intermediate values of transmission, reflection, Andreev reflection, and crossed Andreev reflection, we show that there are eleven independent directions in which the system can be perturbed, which are relevant or irrelevant, and five directions which are marginal. We obtain power laws associated with these relevant and irrelevant perturbations. Unlike the case of the two-wire charge-conserving junction, here we show that there are power laws which are nonlinear functions of V(0) and V(2kF) [where V(k) represents the Fourier transform of the interelectron interaction potential at momentum k]. We also obtain the power law dependence of linear response conductance on voltage bias or temperature around this fixed point.
Resumo:
The extragalactic diffuse emission at gamma-ray energies has interesting cosmological implications since these photons suffer little or no attenuation during their propagation from the site of origin. The emission could originate from either truly diffuse processes or from unresolved point sources such as AGNs, normal galaxies and starburst galaxies. Here, we examine the unresolved point source origin of the extragalactic gamma-ray background emission from normal galaxies and starburst galaxies. gamma-ray emission from normal galaxies is primarily coming from cosmic-ray interactions with interstellar matter and radiation (similar to 90%) along with a small contribution from discrete point sources (similar to 10%). Starburst galaxies are expected to have enhanced supernovae activity which leads to higher cosmic-ray densities, making starburst galaxies sufficiently luminous at gamma-ray energies to be detected by the current gamma-ray mission(Fermi Gamma-ray Space Telescope).
Resumo:
In recent years there has been an upsurge of interest in the study of organic reactions in the solid state. It is now realised that the crystalline matrix provides an extra-ordinary spatial control on the initiation and progress of these reactions. Electronic and dipolar effects which are important in solution are replaced by structural and geometric effects in solids. These 'spatial' or 'topochemical' aspects are important in understanding the mechanistic details of the reaction. In our laboratory, the thermally induced acyl migration in salicylamides from 0- to N- position in the solid state has been under study (Scheme 1). The structures of the acetyl and benzoyl derivatives (Ia,IIa, Ib and IIb) have been reported.
Resumo:
The normal-mode solution to the problem of acoustic wave propagation in an isovelocity ocean with a wavy surface is considered. The surface wave amplitude is assumed to be small compared to the acoustic wavelength, and the method of multiple scales is employed to study the interaction between normal-mode acoustic waves and the surface waves. A nonresonant interaction causes small fluctuations of the amplitude and phase of the acoustic wave at a rate dependent on the frequency of the surface wave. Backscatter occurs if the wavenumber of the surface wave is larger than that of the acoustic wave. The interaction becomes resonant if appropriate phase-matching conditions are satisfied. In this case, two acoustic normal modes get coupled, resulting in a large-scale periodic exchange of energy from one mode to another.
Resumo:
The measured specific heat of normal liquid 3He shows a plateau for 0.15<1 K; below 0.15 K and above 1 K, it rises linearly with temperature. However, the slope on the high-temperature side is very much reduced compared with the free-Fermi-gas value. We explain these features through a microscopic, thermal spin- and density-fluctuation model. The plateau is due to spin fluctuations which have a low characteristic energy in 3He. Because of the low compressibility, the density fluctuations are highly suppressed; this leads to a reduced slope for CV(T) for high temperatures.
Resumo:
Some continuity and differentiability properties of the eigenvalues and eigenfunctions of finite section normal integral operators are proved. These are the extension of corresponding results for symmetric operators ([4.], 554–566; K. B. Athreya and R. Vittal Rao, to appear; [10.], 463–471.
Resumo:
The Kac-Akhiezer formula for finite section normal Wiener-Hopf integral operators is proved. This is an extension of the corresponding result for symmetric operator [2, 3, 4, 5, 6, 7].
Resumo:
Solvolysis of normal and pseudo phthaloyl chlorides in aqueous acetone and in aqueous dioxane has revealed that the former solvolyses about hundred-fold faster than the latter. Contrary to the accepted belief, there is no evidence for equilibrium between the normal and the pseudo forms of phthaloyl chloride, under a variety of conditions.
Resumo:
The infrared spectra of monothiodiacetamide (MTDA, CHaCONHCSCH3) and its N-deuterated compound in solution, solid state and at low temperature are measured. Normal coordinate analysis for the planar vibrations of MTDAd o and -dl have been performed for the two most probable cis-trans-CONHCSor -CSNHCO-conformers using a simple Urey-Bradley force function. The conformation of MTDA derived from the vibrational spectra is supported by the all valence CNDO/2 molecular orbital method. The vibrational assignments and the electronic structure of MTDA are also given.
Resumo:
Infrared spectra of oxazolidine-2-one (Oxo), -2-thione (Oxt) and their N-deuteriated derivatives have been measured over the range 4000-20 cm−1. The fundamental frequencies of these molecules have been assigned on the basis of normal coordinate calculations carried out using a Urey-Bradley potential function supplemented with valence type constants for the out-of-plane modes of the planar skeleton. The results of the vibrational analyses are discussed and correlated with the assignments available for the other related five membered heterocyclic molecules.
Resumo:
The binding of chromomycin A3, an antitumour antibiotic, to various DNA and chromatin isolated from mouse and rat liver, mouse fibrosarcoma and Yoshida ascites sarcoma cells was studied spectrophotometrically at 29°C in 10−2 M Tris-HCl buffer, pH 8.0, containing small amounts of MgCl2 (4.5 · 10−5−25 · 10−5 M). An isobestic point at 415 nm was observed when chromomycin A3 was gradually titrated with Image and its spectrum shifted towards higher wavelength. The rates and extent of these spectral changes were found to be dependent on the concentration of Mg2+. The change in absorbance at 440 nm was used to calculate apparent binding constant (Ka p M−1) and sites per nucleotide (n) from Scatchard plots for various DNA and chromatins. As expected, values of n for chromatin (0.06–0.10) were found to be lower than that found for corresponding DNA (0.10–0.15). Apparently no such correlation exists between binding constants (Ka p M−1 · 10−4) of DNA (6.4–11.2) and of chromatin (3.1–8.3), but Ka p M−1 of chromatin isolated from mouse fibrosarcoma and Yoshida ascites sarcoma are 1.5–3 times higher than that found for mouse and rat liver chromatin. These differences may be taken to indicate structural difference in nucleoprotein complexes caused by neoplasia. The relevance of this finding to tumour suppressive action of chromomycin A3 is discussed.
Resumo:
The infrared spectra of 2,4-dithiobiuret(DTB), N-deuterated dithiobiuret(DTB-d5) and the laser Raman spectrum of DTB are reported. Normal coordinate treatments of DTB and DTB-d5 have been carried out to aid the assignment of the vibrational frequencies. A trans—cis conformation is favoured for DTB molecule in the solid state.