117 resultados para Nonlinear positive systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the problem of stabilization of systems by means of stable compensations is considered, and results are derived for systems using observer�controller structures, for systems using a cascade structure, and for nonlinear systems

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There exist several standard numerical methods for integrating ordinary differential equations. However, if one is interested in integration of Hamiltonian systems, these methods can lead to wrong results. This is due to the fact that these methods do not explicitly preserve the so-called 'symplectic condition' (that needs to be satisfied for Hamiltonian systems) at every integration step. In this paper, we look at various methods for integration that preserve the symplectic condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a Girsanov change of measures, we propose novel variations within a particle-filtering algorithm, as applied to the inverse problem of state and parameter estimations of nonlinear dynamical systems of engineering interest, toward weakly correcting for the linearization or integration errors that almost invariably occur whilst numerically propagating the process dynamics, typically governed by nonlinear stochastic differential equations (SDEs). Specifically, the correction for linearization, provided by the likelihood or the Radon-Nikodym derivative, is incorporated within the evolving flow in two steps. Once the likelihood, an exponential martingale, is split into a product of two factors, correction owing to the first factor is implemented via rejection sampling in the first step. The second factor, which is directly computable, is accounted for via two different schemes, one employing resampling and the other using a gain-weighted innovation term added to the drift field of the process dynamics thereby overcoming the problem of sample dispersion posed by resampling. The proposed strategies, employed as add-ons to existing particle filters, the bootstrap and auxiliary SIR filters in this work, are found to non-trivially improve the convergence and accuracy of the estimates and also yield reduced mean square errors of such estimates vis-a-vis those obtained through the parent-filtering schemes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method to weakly correct the solutions of stochastically driven nonlinear dynamical systems, herein numerically approximated through the Eule-Maruyama (EM) time-marching map, is proposed. An essential feature of the method is a change of measures that aims at rendering the EM-approximated solution measurable with respect to the filtration generated by an appropriately defined error process. Using Ito's formula and adopting a Monte Carlo (MC) setup, it is shown that the correction term may be additively applied to the realizations of the numerically integrated trajectories. Numerical evidence, presently gathered via applications of the proposed method to a few nonlinear mechanical oscillators and a semi-discrete form of a 1-D Burger's equation, lends credence to the remarkably improved numerical accuracy of the corrected solutions even with relatively large time step sizes. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a Monte Carlo filter for recursive estimation of diffusive processes that modulate the instantaneous rates of Poisson measurements. A key aspect is the additive update, through a gain-like correction term, empirically approximated from the innovation integral in the time-discretized Kushner-Stratonovich equation. The additive filter-update scheme eliminates the problem of particle collapse encountered in many conventional particle filters. Through a few numerical demonstrations, the versatility of the proposed filter is brought forth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some new concepts characterizing the response of nonlinear systems are developed. These new concepts are denoted by the terms, the transient system equivalent, the response vector, and the space-phase components. This third concept is analyzed in comparison with the well-known technique of symmetrical components. The performance of a multiplicative feedback control system is represented by a nonlinear integro-differential equation; its solution is obtained by the principle of variation of parameters. The system response is treated as a vector and is resolved into its space-phase components. The individual effects of these components on the performance of the system are discussed. The suitability of the technique for the transient analysis of higher order nonlinear control systems is discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A frequency-domain positivity condition is derived for linear time-varying operators in2and is used to develop2stability criteria for linear and nonlinear feedback systems. These criteria permit the use of a very general class of operators in2with nonstationary kernels, as multipliers. More specific results are obtained by using a first-order differential operator with a time-varying coefficient as multiplier. Finally, by employing periodic multipliers, improved stability criteria are derived for the nonlinear damped Mathieu equation with a forcing function.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Particle filters find important applications in the problems of state and parameter estimations of dynamical systems of engineering interest. Since a typical filtering algorithm involves Monte Carlo simulations of the process equations, sample variance of the estimator is inversely proportional to the number of particles. The sample variance may be reduced if one uses a Rao-Blackwell marginalization of states and performs analytical computations as much as possible. In this work, we propose a semi-analytical particle filter, requiring no Rao-Blackwell marginalization, for state and parameter estimations of nonlinear dynamical systems with additively Gaussian process/observation noises. Through local linearizations of the nonlinear drift fields in the process/observation equations via explicit Ito-Taylor expansions, the given nonlinear system is transformed into an ensemble of locally linearized systems. Using the most recent observation, conditionally Gaussian posterior density functions of the linearized systems are analytically obtained through the Kalman filter. This information is further exploited within the particle filter algorithm for obtaining samples from the optimal posterior density of the states. The potential of the method in state/parameter estimations is demonstrated through numerical illustrations for a few nonlinear oscillators. The proposed filter is found to yield estimates with reduced sample variance and improved accuracy vis-a-vis results from a form of sequential importance sampling filter.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The problem of identifying parameters of nonlinear vibrating systems using spatially incomplete, noisy, time-domain measurements is considered. The problem is formulated within the framework of dynamic state estimation formalisms that employ particle filters. The parameters of the system, which are to be identified, are treated as a set of random variables with finite number of discrete states. The study develops a procedure that combines a bank of self-learning particle filters with a global iteration strategy to estimate the probability distribution of the system parameters to be identified. Individual particle filters are based on the sequential importance sampling filter algorithm that is readily available in the existing literature. The paper develops the requisite recursive formulary for evaluating the evolution of weights associated with system parameter states. The correctness of the formulations developed is demonstrated first by applying the proposed procedure to a few linear vibrating systems for which an alternative solution using adaptive Kalman filter method is possible. Subsequently, illustrative examples on three nonlinear vibrating systems, using synthetic vibration data, are presented to reveal the correct functioning of the method. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The problem of time variant reliability analysis of randomly parametered and randomly driven nonlinear vibrating systems is considered. The study combines two Monte Carlo variance reduction strategies into a single framework to tackle the problem. The first of these strategies is based on the application of the Girsanov transformation to account for the randomness in dynamic excitations, and the second approach is fashioned after the subset simulation method to deal with randomness in system parameters. Illustrative examples include study of single/multi degree of freedom linear/non-linear inelastic randomly parametered building frame models driven by stationary/non-stationary, white/filtered white noise support acceleration. The estimated reliability measures are demonstrated to compare well with results from direct Monte Carlo simulations. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a generalization of the finite volume evolution Galerkin scheme [M. Lukacova-Medvid'ova,J. Saibertov'a, G. Warnecke, Finite volume evolution Galerkin methods for nonlinear hyperbolic systems, J. Comp. Phys. (2002) 183 533-562; M. Luacova-Medvid'ova, K.W. Morton, G. Warnecke, Finite volume evolution Galerkin (FVEG) methods for hyperbolic problems, SIAM J. Sci. Comput. (2004) 26 1-30] for hyperbolic systems with spatially varying flux functions. Our goal is to develop a genuinely multi-dimensional numerical scheme for wave propagation problems in a heterogeneous media. We illustrate our methodology for acoustic waves in a heterogeneous medium but the results can be generalized to more complex systems. The finite volume evolution Galerkin (FVEG) method is a predictor-corrector method combining the finite volume corrector step with the evolutionary predictor step. In order to evolve fluxes along the cell interfaces we use multi-dimensional approximate evolution operator. The latter is constructed using the theory of bicharacteristics under the assumption of spatially dependent wave speeds. To approximate heterogeneous medium a staggered grid approach is used. Several numerical experiments for wave propagation with continuous as well as discontinuous wave speeds confirm the robustness and reliability of the new FVEG scheme.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a mechanism for amplitude death in coupled nonlinear dynamical systems on a complex network having interactions with a common environment like external system. We develop a general stability analysis that is valid for any network topology and obtain the threshold values of coupling constants for the onset of amplitude death. An important outcome of our study is a universal relation between the critical coupling strength and the largest nonzero eigenvalue of the coupling matrix. Our results are fully supported by the detailed numerical analysis for different network topologies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Helicopter trim involves solution of nonlinear force equilibrium equations. As in many nonlinear dynamic systems, helicopter trim problem can show chaotic behavior. This chaotic behavior is found in the basin of attraction of the nonlinear trim equations which have to be solved to determine the main rotor control inputs given by the pilot. This study focuses on the boundary of the basin of attraction obtained for a set of control inputs. We analyze the boundary by considering it at different magnification levels. The magnified views reveal intricate geometries. It is also found that the basin boundary exhibits the characteristic of statistical self-similarity, which is an essential property of fractal geometries. These results led the authors to investigate the fractal dimension of the basin boundary. It is found that this dimension is indeed greater than the topological dimension. From all the observations, it is evident that the boundary of the basin of attraction for helicopter trim problem is fractal in nature. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

An optimal control law for a general nonlinear system can be obtained by solving Hamilton-Jacobi-Bellman equation. However, it is difficult to obtain an analytical solution of this equation even for a moderately complex system. In this paper, we propose a continuoustime single network adaptive critic scheme for nonlinear control affine systems where the optimal cost-to-go function is approximated using a parametric positive semi-definite function. Unlike earlier approaches, a continuous-time weight update law is derived from the HJB equation. The stability of the system is analysed during the evolution of weights using Lyapunov theory. The effectiveness of the scheme is demonstrated through simulation examples.