299 resultados para Nonlinear oscillations
Resumo:
A conceptual model is proposed to explain the observed aperiodicity in the short term climate fluctuations of the tropical coupled ocean-atmosphere system. This is based on the evidence presented here that the tropical coupled ocean-atmosphere system sustains a low frequency inter-annual mode and a host of higher frequency intra-seasonal unstable modes. At long wavelengths, the low frequency mode is dominant while at short wavelengths, the high frequency modes are dominant resulting in the co-existence of a long wave low frequency mode with some short wave intra-seasonal modes in the tropical coupled system. It is argued that due to its long wavelength, the low frequency mode would behave like a linear oscillator while the higher frequency short wave modes would be nonlinear. The conceptual model envisages that an interaction between the low frequency linear oscillator and the high frequency nonlinear oscillations results in the observed aperiodicity of the tropical coupled system. This is illustrated by representing the higher frequency intra-seasonal oscillations by a nonlinear low order model which is then coupled to a linear oscillator with a periodicity of four years. The physical mechanism resulting in the aperiodicity in the low frequency oscillations and implications of these results on the predictability of the coupled system are discussed.
Resumo:
Pyruvate conversion to acetyl-CoA by the pyruvate dehydrogenase (PDH) multienzyme complex is known as a key node in affecting the metabolic fluxes of animal cell culture. However, its possible role in causing possible nonlinear dynamic behavior such as oscillations and multiplicity of animal cells has received little attention. In this work, the kinetic and dynamic behavior of PDH of eucaryotic cells has been analyzed by using both in vitro and simplified in vivo models. With the in vitro model the overall reaction rate (v(1)) of PDH is shown to be a nonlinear function of pyruvate concentration, leading to oscillations under certain conditions. All enzyme components affect v, and the nonlinearity of PDH significantly, the protein X and the core enzyme dihydrolipoamide acyltransferase (E2) being mostly predominant. By considering the synthesis rates of pyruvate and PDH components the in vitro model is expanded to emulate in vivo conditions. Analysis using the in vivo model reveals another interesting kinetic feature of the PDH system, namely, multiple steady states. Depending on the pyruvate and enzyme levels or the operation mode, either a steady state with high pyruvate decarboxylation rate or a steady state with significantly lower decarboxylation rate can be achieved under otherwise identical conditions. In general, the more efficient steady state is associated with a lower pyruvate concentration. A possible time delay in the substrate supply and enzyme synthesis can also affect the steady state to be achieved and lead's to oscillations under certain conditions. Overall, the predictions of multiplicity for the PDH system agree qualitatively well with recent experimental observations in animal cell cultures. The model analysis gives some hints for improving pyruavte metabolism in animal cell culture.
Resumo:
We propose a unified model to explain Quasi-Periodic Oscillation (QPO), particularly of high frequency, observed from black hole and neutron star systems globally. We consider accreting systems to be damped harmonic oscillators exhibiting epicyclic oscillations with higher-order nonlinear resonance to explain QPO. The resonance is expected to be driven by the disturbance from the compact object at its spin frequency. The model explains various properties parallelly for both types of the compact object. It describes QPOs successfully for ten different compact sources. Based on this, we predict the spin frequency of the neutron star Sco X-1 and specific angular momentum of black holes GRO J1655–40, XTE J1550–564, H1743–322, and GRS 1915+105.
Resumo:
A new mode of driven nonlinear vibrations of a stretched string is investigated with reference to conditions of existence, properties, and regions of stability. It is shown that this mode exhibits negative resistance properties at all frequencies and driving force amplitudes. Discovery of this mode helps to fill certain gaps in the theory of forced nonlinear vibrations of strings.
Resumo:
Gravity critical speeds of rotors have hitherto been studied using linear analysis, and ascribed to rotor stiffness asymmetry. Here, we study an idealized asymmetric nonlinear overhung rotor model of Crandall and Brosens, spinning close to its gravity critical speed.Nonlinearities arise from finite displacements, and the rotor's staticlateral deflection under gravity is taken as small. Assuming small asymmetry and damping, slow modulations of whirl amplitudes are studied using the method of multiple scales. Inertia asymmetry appears only at second order. More interestingly, even without stiffness asymmetry, the gravity-induced resonance survives through geometric nonlinearities. The gravity resonant forcing does not influence the resonant mode at leading order, unlike the typical resonant oscillations. Nevertheless,the usual phenomena of resonances, namely saddle-node bifurcations, jump phenomena and hysteresis, are all observed. An unanticipated periodic solution branch is found. In the three-dimensional space oftwo modal coefficients and a detuning parameter, the full set of periodic solutions is found to be an imperfect version of three mutually intersecting curves: a straight line,a parabola and an ellipse.
Resumo:
An attempt is made to study the Einstein relation for the diffusivity-to-mobility ratio (DMR) under crossed fields' configuration in nonlinear optical materials on the basis of a newly formulated electron dispersion law by incorporating the crystal field in the Hamiltonian and including the anisotropies of the effective electron mass and the spin-orbit splitting constants within the framework of kp formalisms. The corresponding results for III-V, ternary and quaternary compounds form a special case of our generalized analysis. The DMR has also been investigated for II-VI and stressed materials on the basis of various appropriate dispersion relations. We have considered n-CdGeAs2, n-Hg1-xCdxTe, n-In1-xGaxAsyP1-y lattice matched to InP, p-CdS and stressed n-InSb materials as examples. The DMR also increases with increasing electric field and the natures of oscillations are totally band structure dependent with different numerical values. It has been observed that the DMR exhibits oscillatory dependences with inverse quantizing magnetic field and carrier degeneracy due to the Subhnikov-de Haas effect. An experimental method of determining the DMR for degenerate materials in the present case has been suggested. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
When a premixed flame is placed within a duct, acoustic waves induce velocity perturbations at the flame's base. These travel down the flame, distorting its surface and modulating its heat release. This can induce self-sustained thermoacoustic oscillations. Although the phase speed of these perturbations is often assumed to equal the mean flow speed, experiments conducted in other studies and Direct Numerical Simulation (DNS) conducted in this study show that it varies with the acoustic frequency. In this paper, we examine how these variations affect the nonlinear thermoacoustic behaviour. We model the heat release with a nonlinear kinematic G-equation, in which the velocity perturbation is modelled on DNS results. The acoustics are governed by linearised momentum and energy equations. We calculate the flame describing function (FDF) using harmonic forcing at several frequencies and amplitudes. Then we calculate thermoacoustic limit cycles and explain their existence and stability by examining the amplitude-dependence of the gain and phase of the FDF. We find that, when the phase speed equals the mean flow speed, the system has only one stable state. When the phase speed does not equal the mean flow speed, however, the system supports multiple limit cycles because the phase of the FDF changes significantly with oscillation amplitude. This shows that the phase speed of velocity perturbations has a strong influence on the nonlinear thermoacoustic behaviour of ducted premixed flames. (C) 2013 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
In a classic study, Kacser & Burns (1981, Genetics 97, 639-666) demonstrated that given certain plausible assumptions, the flux in a metabolic pathway was more or less indifferent to the activity of any of the enzymes in the pathway taken singly. It was inferred from this that the observed dominance of most wild-type alleles with respect to loss-of-function mutations did not require an adaptive, meaning selectionist, explanation. Cornish-Bowden (1987, J. theor. Biol. 125, 333-338) showed that the Kacser-Burns inference was not valid when substrate concentrations were large relative to the relevant Michaelis constants. We find that in a randomly constructed functional pathway, even when substrate levels are small, one can expect high values of control coefficients for metabolic flux in the presence of significant nonlinearities as exemplified by enzymes with Hill coefficients ranging from two to six, or by the existence of oscillatory loops. Under these conditions the flux can be quite sensitive to changes in enzyme activity as might be caused by inactivating one of the two alleles in a diploid. Therefore, the phenomenon of dominance cannot be a trivial ''default'' consequence of physiology but must be intimately linked to the manner in which metabolic networks have been moulded by natural selection.
Resumo:
In this paper, we study the Einstein relation for the diffusivity to mobility ratio (DMR) in n-channel inversion layers of non-linear optical materials on the basis of a newly formulated electron dispersion relation by considering their special properties within the frame work of k.p formalism. The results for the n-channel inversion layers of III-V, ternary and quaternary materials form a special case of our generalized analysis. The DMR for n-channel inversion layers of II-VI, IV-VI and stressed materials has been investigated by formulating the respective 2D electron dispersion laws. It has been found, taking n-channel inversion layers of CdGeAs2, Cd(3)AS(2), InAs, InSb, Hg1-xCdxTe, In1-xGaxAsyP1-y lattice matched to InP, CdS, PbTe, PbSnTe, Pb1-xSnxSe and stressed InSb as examples, that the DMR increases with the increasing surface electric field with different numerical values and the nature of the variations are totally band structure dependent. The well-known expression of the DMR for wide gap materials has been obtained as a special case under certain limiting conditions and this compatibility is an indirect test for our generalized formalism. Besides, an experimental method of determining the 2D DMR for n-channel inversion layers having arbitrary dispersion laws has been suggested.
Resumo:
This article develops a simple analytical expression that relates ion axial secular frequency to field aberration in ion trap mass spectrometers. Hexapole and octopole aberrations have been considered in the present computations. The equation of motion of the ions in a pseudopotential well with these superpositions has the form of a Duffing-like equation and a perturbation method has been used to obtain the expression for ion secular frequency as a function of field imperfections. The expression indicates that the frequency shift is sensitive to the sign of the octopole superposition and insensitive to the sign of the hexapole superposition. Further, for weak multipole superposition of the same magnitude, octopole superposition causes a larger frequency shift in comparison to hexapole superposition.
Resumo:
The random early detection (RED) technique has seen a lot of research over the years. However, the functional relationship between RED performance and its parameters viz,, queue weight (omega(q)), marking probability (max(p)), minimum threshold (min(th)) and maximum threshold (max(th)) is not analytically availa ble. In this paper, we formulate a probabilistic constrained optimization problem by assuming a nonlinear relationship between the RED average queue length and its parameters. This problem involves all the RED parameters as the variables of the optimization problem. We use the barrier and the penalty function approaches for its Solution. However (as above), the exact functional relationship between the barrier and penalty objective functions and the optimization variable is not known, but noisy samples of these are available for different parameter values. Thus, for obtaining the gradient and Hessian of the objective, we use certain recently developed simultaneous perturbation stochastic approximation (SPSA) based estimates of these. We propose two four-timescale stochastic approximation algorithms based oil certain modified second-order SPSA updates for finding the optimum RED parameters. We present the results of detailed simulation experiments conducted over different network topologies and network/traffic conditions/settings, comparing the performance of Our algorithms with variants of RED and a few other well known adaptive queue management (AQM) techniques discussed in the literature.
Resumo:
In a search for inorganic oxide materials showing second-order nonlinear optical (NLO) susceptibility, we investigated several berates, silicates, and a phosphate containing trans-connected MO6, octahedral chains or MO5 square pyramids, where, M = d(0): Ti(IV), Nb(V), or Ta(V), Our investigations identified two new NLO structures: batisite, Na2Ba(TiO)(2)Si4O12, containing trans-connected TiO5 octahedral chains, and fresnoite, Ba2TiOSi2O7, containing square-pyramidal TiO5. Investigation of two other materials containing square-pyramidal TiO5 viz,, Cs2TiOP2O7 and Na4Ti2Si8O22. 4H(2)O, revealed that isolated TiO5, square pyramids alone do not cause a second harmonic generation (SHG) response; rather, the orientation of TiO5 units to produce -Ti-O-Ti-O- chains with alternating long and short Ti-O distances in the fresnoite structure is most likely the origin of a strong SHG response in fresnoite,
Resumo:
This work deals with the formulation and implementation of an energy-momentum conserving algorithm for conducting the nonlinear transient analysis of structures, within the framework of stress-based hybrid elements. Hybrid elements, which are based on a two-field variational formulation, are much less susceptible to locking than conventional displacement-based elements within the static framework. We show that this advantage carries over to the transient case, so that not only are the solutions obtained more accurate, but they are obtained in fewer iterations. We demonstrate the efficacy of the algorithm on a wide range of problems such as ones involving dynamic buckling, complicated three-dimensional motions, et cetera.
Resumo:
Nonlinear absorption and refraction phenomena in stoichiometric lithium niobate (SLN) pure and co-doped with Zn and Nd, and congruent lithium niobate (CLN) were investigated using Z-scan technique. Femtosecond laser pulses from Ti:Sapphire laser (800 nm, 110 fs pulse width and 1 kHz repetition rate) were utilized for the experiment. The process responsible for nonlinear behavior of the samples was identified to be three photon absorption (3PA). This is in agreement with the band gap energies of the samples obtained from the linear absorption cut off and the slope of the plot of Ln(1 − TOA) vs. Ln(I0) using Sutherland’s theory (s = 2.1, for 3PA). The nonlinear refractive index (n2) of Zn doped samples was found to be lower than that of pure samples. Our experiments show that there exists a correlation between the nonlinear properties and the stoichiometry of the samples. The values of n2 fall into the same range as those obtained for the materials of similar band gap.