264 resultados para Neuronal network
Resumo:
Understanding the functioning of a neural system in terms of its underlying circuitry is an important problem in neuroscience. Recent d evelopments in electrophysiology and imaging allow one to simultaneously record activities of hundreds of neurons. Inferring the underlying neuronal connectivity patterns from such multi-neuronal spike train data streams is a challenging statistical and computational problem. This task involves finding significant temporal patterns from vast amounts of symbolic time series data. In this paper we show that the frequent episode mining methods from the field of temporal data mining can be very useful in this context. In the frequent episode discovery framework, the data is viewed as a sequence of events, each of which is characterized by an event type and its time of occurrence and episodes are certain types of temporal patterns in such data. Here we show that, using the set of discovered frequent episodes from multi-neuronal data, one can infer different types of connectivity patterns in the neural system that generated it. For this purpose, we introduce the notion of mining for frequent episodes under certain temporal constraints; the structure of these temporal constraints is motivated by the application. We present algorithms for discovering serial and parallel episodes under these temporal constraints. Through extensive simulation studies we demonstrate that these methods are useful for unearthing patterns of neuronal network connectivity.
Resumo:
We study the responses of a cultured neural network when it is exposed to epileptogenesis glutamate injury causing epilepsy and subsequent treatment with phenobarbital by constructing connectivity map of neurons using correlation matrix. This study is particularly useful in understanding the pharmaceutical drug induced changes in the neuronal network properties with insights into changes at the systems biology level. (C) 2010 American Institute of Physics. [doi:10.1063/1.3398025]
Resumo:
The subiculum, considered to be the output structure of the hippocampus, modulates information flow from the hippocampus to various cortical and sub-cortical areas such as the nucleus accumbens, lateral septal region, thalamus, nucleus gelatinosus, medial nucleus and mammillary nuclei. Tonic inhibitory current plays an important role in neuronal physiology and pathophysiology by modulating the electrophysiological properties of neurons. While the alterations of various electrical properties due to tonic inhibition have been studied in neurons from different regions, its influence on intrinsic subthreshold resonance in pyramidal excitatory neurons expressing hyperpolarization-activated cyclic nucleotide-gated (HCN) channels is not known. Using pharmacological agents, we show the involvement of alpha 5 beta gamma GABA(A) receptors in the picrotoxin-sensitive tonic current in subicular pyramidal neurons. We further investigated the contribution of tonic conductance in regulating subthreshold electrophysiological properties using current clamp and dynamic clamp experiments. We demonstrate that tonic GABAergic inhibition can actively modulate subthreshold properties, including resonance due to HCN channels, which can potentially alter the response dynamics of subicular pyramidal neurons in an oscillating neuronal network.
Resumo:
The local fast-spiking interneurons (FSINs) are considered to be crucial for the generation, maintenance, and modulation of neuronal network oscillations especially in the gamma frequency band. Gamma frequency oscillations have been associated with different aspects of behavior. But the prolonged effects of gamma frequency synaptic activity on the FSINs remain elusive. Using whole cell current clamp patch recordings, we observed a sustained decrease of intrinsic excitability in the FSINs of the dentate gyrus (DG) following repetitive stimulations of the mossy fibers at 30 Hz (gamma bursts). Surprisingly, the granule cells (GCs) did not express intrinsic plastic changes upon similar synaptic excitation of their apical dendritic inputs. Interestingly, pairing the gamma bursts with membrane hyperpolarization accentuated the plasticity in FSINs following the induction protocol, while the plasticity attenuated following gamma bursts paired with membrane depolarization. Paired pulse ratio measurement of the synaptic responses did not show significant changes during the experiments. However, the induction protocols were accompanied with postsynaptic calcium rise in FSINs. Interestingly, the maximum and the minimum increase occurred during gamma bursts with membrane hyperpolarization and depolarization respectively. Including a selective blocker of calcium-permeable AMPA receptors (CP-AMPARs) in the bath; significantly attenuated the calcium rise and blocked the membrane potential dependence of the calcium rise in the FSINs, suggesting their involvement in the observed phenomenon. Chelation of intracellular calcium, blocking HCN channel conductance or blocking CP-AMPARs during the experiment forbade the long lasting expression of the plasticity. Simultaneous dual patch recordings from FSINs and synaptically connected putative GCs confirmed the decreased inhibition in the GCs accompanying the decreased intrinsic excitability in the FSINs. Experimentally constrained network simulations using NEURON predicted increased spiking in the GC owing to decreased input resistance in the FSIN. We hypothesize that the selective plasticity in the FSINs induced by local network activity may serve to increase information throughput into the downstream hippocampal subfields besides providing neuroprotection to the FSINs. (c) 2014 Wiley Periodicals, Inc.
Resumo:
Over past few years, the studies of cultured neuronal networks have opened up avenues for understanding the ion channels, receptor molecules, and synaptic plasticity that may form the basis of learning and memory. The hippocampal neurons from rats are dissociated and cultured on a surface containing a grid of 64 electrodes. The signals from these 64 electrodes are acquired using a fast data acquisition system MED64 (Alpha MED Sciences, Japan) at a sampling rate of 20 K samples with a precision of 16-bits per sample. A few minutes of acquired data runs in to a few hundreds of Mega Bytes. The data processing for the neural analysis is highly compute-intensive because the volume of data is huge. The major processing requirements are noise removal, pattern recovery, pattern matching, clustering and so on. In order to interface a neuronal colony to a physical world, these computations need to be performed in real-time. A single processor such as a desk top computer may not be adequate to meet this computational requirements. Parallel computing is a method used to satisfy the real-time computational requirements of a neuronal system that interacts with an external world while increasing the flexibility and scalability of the application. In this work, we developed a parallel neuronal system using a multi-node Digital Signal processing system. With 8 processors, the system is able to compute and map incoming signals segmented over a period of 200 ms in to an action in a trained cluster system in real time.
Resumo:
Study of hypersynchronous activity is of prime importance for combating epilepsy. Studies on network structure typically reconstruct the network by measuring various aspects of the interaction between neurons and subsequently measure the properties of the reconstructed network. In sub-sampled networks such methods lead to significant errors in reconstruction. Using rat hippocampal neurons cultured on a multi-electrode array dish and a glutamate injury model of epilepsy in vitro, we studied synchronous activity in neuronal networks. Using the first spike latencies in various neurons during a network burst, we extract various recurring spatio-temporal onset patterns in the networks. Comparing the patterns seen in control and injured networks, we observe that injured networks express a wide diversity in their foci (origin) and activation pattern, while control networks show limited diversity. Furthermore, we note that onset patterns in glutamate injured networks show a positive correlation between synchronization delay and physical distance between neurons, while control networks do not.
Resumo:
Study of hypersynchronous activity is of prime importance for combating epilepsy. Studies on network structure typically reconstruct the network by measuring various aspects of the interaction between neurons and subsequently measure the properties of the reconstructed network. In sub-sampled networks such methods lead to significant errors in reconstruction. Using rat hippocampal neurons cultured on a multi-electrode array dish and a glutamate injury model of epilepsy in vitro, we studied synchronous activity in neuronal networks. Using the first spike latencies in various neurons during a network burst, we extract various recurring spatio-temporal onset patterns in the networks. Comparing the patterns seen in control and injured networks, we observe that injured networks express a wide diversity in their foci (origin) and activation pattern, while control networks show limited diversity. Furthermore, we note that onset patterns in glutamate injured networks show a positive correlation between synchronization delay and physical distance between neurons, while control networks do not.
Resumo:
Synfire waves are propagating spike packets in synfire chains, which are feedforward chains embedded in random networks. Although synfire waves have proved to be effective quantification for network activity with clear relations to network structure, their utilities are largely limited to feedforward networks with low background activity. To overcome these shortcomings, we describe a novel generalisation of synfire waves, and define `synconset wave' as a cascade of first spikes within a synchronisation event. Synconset waves would occur in `synconset chains', which are feedforward chains embedded in possibly heavily recurrent networks with heavy background activity. We probed the utility of synconset waves using simulation of single compartment neuron network models with biophysically realistic conductances, and demonstrated that the spread of synconset waves directly follows from the network connectivity matrix and is modulated by top-down inputs and the resultant oscillations. Such synconset profiles lend intuitive insights into network organisation in terms of connection probabilities between various network regions rather than an adjacency matrix. To test this intuition, we develop a Bayesian likelihood function that quantifies the probability that an observed synfire wave was caused by a given network. Further, we demonstrate it's utility in the inverse problem of identifying the network that caused a given synfire wave. This method was effective even in highly subsampled networks where only a small subset of neurons were accessible, thus showing it's utility in experimental estimation of connectomes in real neuronal-networks. Together, we propose synconset chains/waves as an effective framework for understanding the impact of network structure on function, and as a step towards developing physiology-driven network identification methods. Finally, as synconset chains extend the utilities of synfire chains to arbitrary networks, we suggest utilities of our framework to several aspects of network physiology including cell assemblies, population codes, and oscillatory synchrony.
Resumo:
The coupling of endocytosis and exocytosis underlies fundamental biological processes ranging from fertilization to neuronal activity and cellular polarity. However, the mechanisms governing the spatial organization of endocytosis and exocytosis require clarification. Using a quantitative imaging-based screen in budding yeast, we identified 89 mutants displaying defects in the localization of either one or both pathways. High-resolution single-vesicle tracking revealed that the endocytic and exocytic mutants she4 Delta and bud6 Delta alter post-Golgi vesicle dynamics in opposite ways. The endocytic and exocytic pathways display strong interdependence during polarity establishment while being more independent during polarity maintenance. Systems analysis identified the exocyst complex as a key network hub, rich in genetic interactions with endocytic and exocytic components. Exocyst mutants displayed altered endocytic and post-Golgi vesicle dynamics and interspersed endocytic and exocytic domains compared with control cells. These data are consistent with an important role for the exocyst in coordinating endocytosis and exocytosis.
Resumo:
In this paper, we propose a new load distribution strategy called `send-and-receive' for scheduling divisible loads, in a linear network of processors with communication delay. This strategy is designed to optimally utilize the network resources and thereby minimizes the processing time of entire processing load. A closed-form expression for optimal size of load fractions and processing time are derived when the processing load originates at processor located in boundary and interior of the network. A condition on processor and link speed is also derived to ensure that the processors are continuously engaged in load distributions. This paper also presents a parallel implementation of `digital watermarking problem' on a personal computer-based Pentium Linear Network (PLN) topology. Experiments are carried out to study the performance of the proposed strategy and results are compared with other strategies found in literature.
Resumo:
On the basis of a more realistic tetrakaidecahedral structure of foam bubbles, a network model of static foam drainage has been developed. The model considers the foam to be made up of films and Plateau borders. The films drain into the adjacent Plateau borders, which in turn form a network through which the liquid moves from the foam to the liquid pool. From the structure, a unit flow cell was found, which constitutes the foam when stacked together both horizontally and vertically. Symmetry in the unit flow cell indicates that the flow analysis of a part of it can be employed to obtain the drainage for the whole foam. Material balance equations have been written for each segment of this subsection, ensuring connectivity, and solved with the appropriate boundary and initial conditions. The calculated rates of drainage, when compared with the available experimental results, indicate that the model predicts the experimental results well.
Resumo:
In this paper, we present an improved load distribution strategy, for arbitrarily divisible processing loads, to minimize the processing time in a distributed linear network of communicating processors by an efficient utilization of their front-ends. Closed-form solutions are derived, with the processing load originating at the boundary and at the interior of the network, under some important conditions on the arrangement of processors and links in the network. Asymptotic analysis is carried out to explore the ultimate performance limits of such networks. Two important theorems are stated regarding the optimal load sequence and the optimal load origination point. Comparative study of this new strategy with an earlier strategy is also presented.
Resumo:
We analyse the fault-tolerant parameters and topological properties of a hierarchical network of hypercubes. We take a close look at the Extended Hypercube (EH) and the Hyperweave (HW) architectures and also compare them with other popular architectures. These two architectures have low diameter and constant degree of connectivity making it possible to expand these networks without affecting the existing configuration. A scheme for incrementally expanding this network is also presented. We also look at the performance of the ASCEND/DESCEND class of algorithms on these architectures.
Resumo:
A major question in current network science is how to understand the relationship between structure and functioning of real networks. Here we present a comparative network analysis of 48 wasp and 36 human social networks. We have compared the centralisation and small world character of these interaction networks and have studied how these properties change over time. We compared the interaction networks of (1) two congeneric wasp species (Ropalidia marginata and Ropalidia cyathiformis), (2) the queen-right (with the queen) and queen-less (without the queen) networks of wasps, (3) the four network types obtained by combining (1) and (2) above, and (4) wasp networks with the social networks of children in 36 classrooms. We have found perfect (100%) centralisation in a queen-less wasp colony and nearly perfect centralisation in several other queen-less wasp colonies. Note that the perfectly centralised interaction network is quite unique in the literature of real-world networks. Differences between the interaction networks of the two wasp species are smaller than differences between the networks describing their different colony conditions. Also, the differences between different colony conditions are larger than the differences between wasp and children networks. For example, the structure of queen-right R. marginata colonies is more similar to children social networks than to that of their queen-less colonies. We conclude that network architecture depends more on the functioning of the particular community than on taxonomic differences (either between two wasp species or between wasps and humans).
Resumo:
The nicotinic Acetylcholine Receptor (nAChR) is the major class of neurotransmitter receptors that is involved in many neurodegenerative conditions such as schizophrenia, Alzheimer's and Parkinson's diseases. The N-terminal region or Ligand Binding Domain (LBD) of nAChR is located at pre- and post-synaptic nervous system, which mediates synaptic transmission. nAChR acts as the drug target for agonist and competitive antagonist molecules that modulate signal transmission at the nerve terminals. Based on Acetylcholine Binding Protein (AChBP) from Lymnea stagnalis as the structural template, the homology modeling approach was carried out to build three dimensional model of the N-terminal region of human alpha(7)nAChR. This theoretical model is an assembly of five alpha(7) subunits with 5 fold axis symmetry, constituting a channel, with the binding picket present at the interface region of the subunits. alpha-netlrotoxin is a potent nAChR competitive antagonist that readily blocks the channel resulting in paralysis. The molecular interaction of alpha-Bungarotoxin, a long chain alpha-neurotoxin from (Bungarus multicinctus) and human alpha(7)nAChR seas studied. Agonists such as acetylcholine, nicotine, which are used in it diverse array of biological activities, such as enhancements of cognitive performances, were also docked with the theoretical model of human alpha(7)nAChR. These docked complexes were analyzed further for identifying the crucial residues involved i interaction. These results provide the details of interaction of agonists and competitive antagonists with three dimensional model of the N-terminal region of human alpha(7)nAChR and thereby point to the design of novel lead compounds.