101 resultados para Nature study.
Resumo:
For N2 on a clean Fe surface, the adsorbed precursor in a parallel orientation becomes predominant around 110 K, while at lower temperatures it coexists with a weakly adsorbed species. On a Ba-promoted Fe surface, however, N2 is present exclusively in the precursor state in the temperature range 80–150 K following moderate exposure. Besides exhibiting a low N-N stretching frequency of 1530 cm−1, the precursor shows a clear separation between the 5σ and 1π levels in the UPS; the precursor dissociates to give a nitridic species around 160 K.
Resumo:
Commercial-grade En40B steel has been ion nitrided in the temperature range 475–550°C in a 25%N2–75%H2 gas mixture. The nature of the compound layer formed was studied by the X-ray diffraction technique and optical metallography. It was observed that the structure of the compound layer gradually transforms from a predominantly epsilon (Porson) nitride to a predominantly γ′ nitride structure with increasing treatment time. Optical metallography studies on sections orthogonal to the nitrided surface showed that, after about 5 h of treatment, the thickness of the compound layer decreases with further increase in treatment time.
Resumo:
The nature of coordination in metal monothiocarbamates is shown to depend on the hardness or softness of the metal ton. Thus, the monothiocarbamate ion acts as a monodentate ligand with metal-sulphur bending when the metal ion is a soft acid while it acts as a bidentate ligand when the metal ion is a hard acid; it can exhibit either behaviour when the metal ion is a borderline acid. In dialkyltin and dialkylmonocholorotin complexes, the monothiocarbamate ion acts as a bidentate ligand with strong Sn-S bonding while in trialkyl-or triaryl-tin complexes it acts essentially as a monodentate ligand. Thus, R3Sn(I) seems to be a soft or borderline acid while R2Sn(II) is a hard acid.
Resumo:
X‐ray absorption near‐edge spectroscopy studies show that Pb in superconducting Tl0.5Pb0.5CaSr2Cu2O7+δ is essentially in the 4+ state while it is in the 2+ state in Pb2Sr2Ca1−xLnxCu3O8+δ.
Resumo:
Since the time of Kirkwood, observed deviations in magnitude of the dielectric constant of aqueous protein solution from that of neat water (similar to 80) and slower decay of polarization have been subjects of enormous interest, controversy, and debate. Most of the common proteins have large permanent dipole moments (often more than 100 D) that can influence structure and dynamics of even distant water molecules, thereby affecting collective polarization fluctuation of the solution, which in turn can significantly alter solution's dielectric constant. Therefore, distance dependence of polarization fluctuation can provide important insight into the nature of biological water. We explore these aspects by studying aqueous solutions of four different proteins of different characteristics and varying sizes, chicken villin headpiece subdomain (HP-36), immunoglobulin binding domain protein G (GB1), hen-egg white lysozyme (LYS), and Myoglobin (MYO). We simulate fairly large systems consisting of single protein molecule and 20000-30000 water molecules (varied according to the protein size), providing a concentration in the range of similar to 2-3 mM. We find that the calculated dielectric constant of the system shows a noticeable increment in all the cases compared to that of neat water. Total dipole moment auto time correlation function of water < dM(W) (0)delta M-W (t) > is found to be sensitive to the nature of the protein. Surprisingly, dipole moment of the protein and total dipole moment of the water molecules are found to be only weakly coupled. Shellwise decomposition of water molecules around protein reveals higher density of first layer compared to the succeeding ones. We also calculate heuristic effective dielectric constant of successive layers and find that the layer adjacent to protein has much lower value (similar to 50). However, progressive layers exhibit successive increment of dielectric constant, finally reaching a value close to that of bulk 4-5 layers away. We also calculate shellwise orientational correlation function and tetrahedral order parameter to understand the local dynamics and structural re-arrangement of water. Theoretical analysis providing simple method for calculation of shellwise local dielectric constant and implication of these findings are elaborately discussed in the present work. (C) 2014 AIP Publishing LLC.
Resumo:
A detailed investigation of Y0.5Ca0.5MnO3 with a very small radius of the A-site cations ([r(A)] approximate to 1.13 Angstrom reveals the occurrence of a charge-ordering transition in the paramagnetic state, at a relatively high temperature of 260 K. The orthorhombic lattice distortion, as measured by the dimensionless index D, is large (similar to 1.75%) over the entire 300-100 K range, but the antiferromagnetic interactions become prominent only at low temperatures (< 160 K). The charge-ordering gap in Y0.5Ca0.5MnO3, measured by low-temperature vacuum tunnelling spectroscopy, is large (similar to 0.5 eV) and the charge-ordered state is unaffected by the application of a magnetic field of 6 T. The study indicates that the nature of charge-ordering in Y0.5Ca0.5MnO3 which is dominated by the cooperative Jahn-Teller effect and the associated lattice distortion is distinctly different from analogous manganates with larger [r(A)].
Resumo:
This paper deals with new results obtained in regard to the reconstruction properties of side-band Fresnel holograms (SBFH) of self-imaging type objects (for example, gratings) as compared with those of general objects. The major finding is that a distribution I2, which appears on the real-image plane along with the conventional real-image I1, remains a 2Z distribution (where 2Z is the axial distance between the object and its self-imaging plane) under a variety of situations, while its nature and focusing properties differ from one situation to another. It is demonstrated that the two distributions I1 and I2 can be used in the development of a novel technique for image subtraction.
Resumo:
E.S.R. investigations of γ-irradiated ferroelectric Sodium ammonium selenate, NaNH4SeO4•2H2O and its deuteriated analogue in powder and single crystal forms have led to a deeper understanding of the nature of the ferroelectric transition of 180 K. A number of paramagnetic species formed due to γ-irradiation have been identified on the basis of their g-factors and hyperfine features from 77Se. The radical SeO4 has been used as a microprobe in studying the phase transition.
Influence of Solvent on Photoinduced Electron-Transfer Reaction: Time-Resolved Resonance Raman Study
Resumo:
Time-resolved resonance Raman spectroscopy (TR3) has been used to study the effect of solvent polarity on the mechanism and nature of intermediates formed in photoinduced electron-transfer reaction between triplet flouranil ((FL)-F-3) and tetramethylbenzene (TMB). Comparison of the TR3 spectra in polar, nonpolar, and medium polar media suggests that formation of radical anion due to electron-transfer reaction between (FL)-F-3 and TMB is favored in more polar solvents, whereas ketyl radical formation is more favored in less polar media. Compared to ketyl radical, the extent of radical anion formation is negligible in nonpolar solvents. Therefore, it is inferred that in nonpolar media ketyl radical is mainly generated by hydrogen-transfer reaction in the encounter complex between (FL)-F-3 and TMB. In solvents of medium polarity, the ion-pair decay leads to the formation of both ketyl radical and ketyl radical formed from the encounter between triplet state and the donor. Thus, competition between the formation of ketyl radical and ion pair is influenced by the solvent polarity. The nature of the ion pair in different solvent polarity has been investigated from the changes observed in the vibrational frequency of (fluoranil) FL part of the complex.
Resumo:
The anomeric effect in S---C---S and O---C---S systems was studied by using closed-shell Hartree-Fock theory. A comparison of the STO-3G level with the 4–31G and 6–31G* levels was performed for the O---C---O system, and the STO-3G level found adequate for study of the anomeric effect. Optimization of bond lengths and angles was conducted at the STO-3G level and limited studies were made at the 4–31G level. The nature of the torsional potential curves is compared for the O---C---O, O---C---S, and S---C---S systems. The possible reasons for the decreased anomeric effect in sulfur systems are discussed.
Resumo:
XPS studies show that the presence of chemisorbed chlorine stabilizes and also enhances molecular dioxygen species on Ag surfaces dosed with either K or Ba. The surface atomic oxygen is found to become depleted on chlorination. The variation in the nature of surface species with respect to temperature shows chlorine-induced diffusion of atomic oxygen into the subsurface region at 300 K. For coverages of potassium up to 8 × 1014 atoms/cm2, preferential chloridation of Ag occurs while at higher potassium coverages, KCl formation is distinctly observed on the surface. In the case of barium, two types of adsorbed chlorine species, Cl(α) and Cl(β), associated with Ag and Ba, respectively, are clearly seen even at low barium coverages. This is believed to be due to the higher valence occupation of barium compared to potassium. The Cl(α) species associated with Ag is found to occupy a preferred site on both K- and Ba-dosed surfaces, involving chemisorptive replacement of O(α) to the subsurface region.
Resumo:
By using the same current-time (I-t) curves, electrochemical kinetic parameters are determined by two methods, (a) using the ratio of current at a given potential to the diffusion-controlled limiting current and (b) curve fitting method, for the reduction of Cu(II)–CyDTA complex. The analysis by the method (a) shows that the rate determining step involves only one electron although the overall reduction of the complex involves two electrons suggesting thereby the stepwise reduction of the complex. The nature of I-t curves suggests the adsorption of intermediate species at the electrode surface. Under these circumstances more reliable kinetic parameters can be obtained by the method (a) compared to that of (b). Similar observations are found in the case of reduction of Cu(II)–EDTA complex.
Resumo:
Magnetic and dielectric measurements confirm the multiferroic nature of LuMnO3. Raman spectra of LuMnO3 have been recorded in the 77-800 K range covering both the antiferromagnetic transition at 90 K and the ferroelectric-paraelectric transition at 750 K. The changes in the phonon modes frequencies and band-widths indicate the presence of phonon-spin coupling in the antiferromagnetically ordered phase. The ferroelectric-paraelectric transition is accompanied by the broadening and disappearance of many of the phonon modes. Some of the phonon modes also show anomalies at the ferroelectric transition.
Resumo:
With the intent of probing the feasibility of employing annulation as a tactic to engender axial rich conformations in nucleoside analogues, two adenine-derived, ``conformationally restricted'' nucleocylitols, 9 and 10, have been conceptualized as representatives of a hitherto unexplored class of nucleic acid base-cyclitol hybrids. A general synthetic strategy, with an inherent scope for diversification, allowed rapid functionalization of indane and tetralin to furnish 9 and 10 respectively in fair yield. Single-crystal X-ray diffraction analysis revealed that the two nucleocyclitols under study, though homologous, present completely dissimilar modes of molecular packing, marked, in particular, by the nature of involvement of the adenynyl NH2 group in the supramolecular assembly. In addition, the crystal structures of 9 and 10 also exhibit two different conformations of the functionalized cyclohexane ring. Thus, while the six-membered carbocycle in cyclopenta-annulated 9 exists in the expected chair (C) conformation that in cyclohexaannulated 10, which crystallizes as a dihydrate, shows an unusual twist-boat (TB) conformation. From a close analysis of the (HNMR)-H-1 spectroscopic data recorded for 9 and 10 in CD3OD, it was possible to put forth a putative explanation for the uncanny conformational preferences of crystalline 9 and 10.
Resumo:
India has rich traditions of nature conservation as well as a vigorous official program of protection of nature reserves developed over the last 40 years. However, the officialp rograms uffers fromt otal relianceo n authoritarianm anagement arrangements in which decisions are made centrally and coercion is used to implement them. At the same time, the state apparatus organises subsidized resource flows to the urbanindustrial- intensivea griculturalc omplex which promote inefficient,n on-sustainable resource-use patterns that are inimical to conservation of biodiversity. These processes are illustrated within the concrete setting of the district of Uttara Kannada in southern India. It is suggested that the interests of conservation would be served far better by an approach that withdraws the subsidies to the elite so that a much more efficient, sustainable and equitable pattern of resource use, compatible with conservation of biodiversity, can be instituted. In conjunction with this, the larger society should involve local people in working out detailed plans for conservation of biodiversity and offer them adequate authority as well as appropriate financial incentives to implement these plans. The paper goes on to illustrate how such an approach may be implemented in the case of Uttara Kannada.