37 resultados para National cases
Resumo:
India has been acknowledged as a large reservoir of nature's random mutation, an original 'rich' source of knowledge in the context of international genome studies. Human genome knowledge and the possible understanding of the basis of uniqueness of each individual in chemical terms has presented a number of inescapable challenges to our own jurisprudence philosophies and our ethical sensibilities.
Papers Presented At The National Symposium On Bio-Organic Chemistry, Bangalore, July 1982 - Foreword
Resumo:
The unsteady free convection boundary layer hydromagnectic flow near a stagnation point of a three-dimensional body with applied magnetic field and time-dependent wall temperature has been studied. Both semi-semilar and self-similar cases have been considered. The equations governing the above flow have been solved numerically using an implicit finite-difference scheme due to Keller. The magnetic field is found to reduce both the heat transfer and skin friction. The effect of the variation of the wall temperature with time and of mass transfer is found to be more pronounced on the heat transfer than on the skin friction. In self-similar case, for decelerating flow, there is temperature overshoot in the presence of fmagnetic field, but in semi-similar case overshoot occurs even without magnetic field due to the unsteadiness
Resumo:
The reliability of the computer program for structural synthesis and analysis of simple-jointed kinematic chains developed in Part 1 has been established by applying it to several cases for whuch solutions are either fully or partially available in the literature, such as 7-link, zero-freedom chains; 8- and 10-link, single-freedom chains; 12-link, single-freedom binary chains; and 9-link, two-freedom chains. In the process some discrepancies in the results reported in previous literature have been brought to light.
Resumo:
Transmembrane channel-forming polypeptides can function as uncouplers of mitochondrial oxidative phosphorylation. The observed effects are dependent on the phosphate ion (Pi) concentration in the medium. At low Pi (2.5 mM) the order of uncoupling efficiencies is gramicidin A much greater than alamethicin greater than tetraacetyl melittin greater than melittin. The remarkably high activity of gramicidin A suggests insertion of preformed channel dimers into the membrane. It is also suggested that lipid phase association of peptides is necessary in the other cases. At Pi = 100 mM inhibitory effects are observed for alamethicin and tetraacetyl melittin. Less pronounced inhibition is seen for melittin, while no such effect is noted for gramicidin A. The site of inhibition is shown to be complex IV, and the differences in the behavior of the peptides are rationalized in terms of channel structures.
Resumo:
The impact of riparian land use on the stream insect communities was studied at Kudremukh National Park located within Western Ghats, a tropical biodiversity hotspot in India. The diversity and community composition of stream insects varied across streams with different riparian land use types. The rarefied family and generic richness was highest in streams with natural semi evergreen forests as riparian vegetation. However, when the streams had human habitations and areca nut plantations as riparian land use type, the rarefied richness was higher than that of streams with natural evergreen forests and grasslands. The streams with scrub lands and iron ore mining as the riparian land use had the lowest rarefied richness. Within a landscape, the streams with the natural riparian vegetation had similar community composition. However, streams with natural grasslands as the riparian vegetation, had low diversity and the community composition was similar to those of paddy fields. We discuss how stream insect assemblages differ due to varied riparian land use patterns, reflecting fundamental alterations in the functioning of stream ecosystems. This understanding is vital to conserve, manage and restore tropical riverine ecosystems.
Resumo:
A few simple three-atom thermoneutral radical exchange reactions (i.e. A + BC --> AB + C) are examined by ab initio SCF methods. Emphasis is laid on the detailed analysis of density matrices rather than on energetics. Results reveal that the sum of the bond orders of the breaking and forming bonds is not conserved to unity, due to development of free valence on the migrating atom 'B' in the transition state. Bond orders, free valence and spin densities on the atoms are calculated. The present analysis shows that the bond-cleavage process is always more advanced than the bond-formation process in the transition state. Further analysis shows a development of the negative spin density on the migrating atom 'B' in the transition state. The depletion of the alpha-spin density on the radical site "A" in the reactant during the reaction lags behind the growth of the alpha-spin density on the terminal atom "C" of the reactant bond, 'B-C' in the transition state. But all these processes are completed simultaneously at the end of the reaction. Hence, the reactions are asynchronous but kinetically concerted in most cases.
Resumo:
Climate change is one of the most important global environmental challenges, with implications for food production, water supply, health, energy, etc. Addressing climate change requires a good scientific understanding as well as coordinated action at national and global level. This paper addresses these challenges. Historically, the responsibility for greenhouse gas emissions' increase lies largely with the industrialized world, though the developing countries are likely to be the source of an increasing proportion of future emissions. The projected climate change under various scenarios is likely to have implications on food production, water supply, coastal settlements, forest ecosystems, health, energy security, etc. The adaptive capacity of communities likely to be impacted by climate change is low in developing countries. The efforts made by the UNFCCC and the Kyoto Protocol provisions are clearly inadequate to address the climate change challenge. The most effective way to address climate change is to adopt a sustainable development pathway by shifting to environmentally sustainable technologies and promotion of energy efficiency, renewable energy, forest conservation, reforestation, water conservation, etc. The issue of highest importance to developing countries is reducing the vulnerability of their natural and socio-economic systems to the projected climate change. India and other developing countries will face the challenge of promoting mitigation and adaptation strategies, bearing the cost of such an effort, and its implications for economic development.
Resumo:
Analysts have identified four related questions that need to be asked and answered before agreements to respond to global warming will be possible.1 Which countries bear responsibility for causing the problem? What quantities and mix of greenhouse gases should each country be allowed to emit? Which countries have the resources to do something about the problem? Where are the best opportunities for undertaking projects to respond to the problem? Failure to distinguish among these four questions, or willingness to accept superficial answers, promotes unnecessary controversy.
Resumo:
Polyclonal antibodies were raised against the Physalis mottle virus (PhMV) and its denatured coat protein (PhMV-P). Analysis of the reactivity of the polyclonal antibodies with tryptic peptides of PhMV-P in dot-blot assays revealed that many of the epitopes were common to intact virus and denatured coat protein. Five monoclonal antibodies to the intact virus were obtained using hybridoma technology. These monoclonal antibodies reacted well with the denatured coat protein. Epitope analysis suggested that probably these monoclonal antibodies recognize overlapping epitopes. This was substantiated by epitope mapping using the CNBr digest of PhMV-P in western blots. All the five monoclonals recognized the N-terminal 15 K fragment. Attempts to further delineate the specific region recognized by the monoclonals by various enzymatic cleavages resulted in the loss of reactivity in all the cases. The results indicate that these monoclonals probably recognize epitopes within the N-terminal 15 K fragment of the coat protein.
Resumo:
A general procedure for arriving at 3-D models of disulphiderich olypeptide systems based on the covalent cross-link constraints has been developed. The procedure, which has been coded as a computer program, RANMOD, assigns a large number of random, permitted backbone conformations to the polypeptide and identifies stereochemically acceptable structures as plausible models based on strainless disulphide bridge modelling. Disulphide bond modelling is performed using the procedure MODIP developed earlier, in connection with the choice of suitable sites where disulphide bonds could be engineered in proteins (Sowdhamini,R., Srinivasan,N., Shoichet,B., Santi,D.V., Ramakrishnan,C. and Balaram,P. (1989) Protein Engng, 3, 95-103). The method RANMOD has been tested on small disulphide loops and the structures compared against preferred backbone conformations derived from an analysis of putative disulphide subdatabase and model calculations. RANMOD has been applied to disulphiderich peptides and found to give rise to several stereochemically acceptable structures. The results obtained on the modelling of two test cases, a-conotoxin GI and endothelin I, are presented. Available NMR data suggest that such small systems exhibit conformational heterogeneity in solution. Hence, this approach for obtaining several distinct models is particularly attractive for the study of conformational excursions.