109 resultados para NEGATIVE MAGNETORESISTANCE
Resumo:
MnO/C composite coatings were grown by the metalorganic chemical vapor deposition process on ceramic alumina in argon ambient. Characterization by various techniques confirms that these coatings are homogeneous composites comprising nanometer-sized MnO particles embedded in a matrix of nanometer-sized graphite. Components of the MnO/C composite coating crystalline disordered, but are electrically quite conductive. Resistance vs. temperature measurements show that coating resistance increases exponentially from a few hundred ohms at room temperature to a few megaohms at 30 K. Logarithmic plots of reduced activation energy vs. temperature show that the coating material undergoes a metal-insulator transition. The reduced activation energy exponent for the film under zero magnetic field was 2.1, which is unusually high, implying that conduction is suppressed at much faster rate than the Mott or the Efros-Shklovskii hopping mechanism. Magnetoconductance us. magnetic field plots obtained at various temperatures show a high magnetoconductance (similar to 28.8%) at 100 K, which is unusually large for a disordered system, wherein magnetoresistance is attributed typically to weak localization. A plausible explanation for the unusual behavior observed in the carbonaceous disordered composite material is proposed. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The authors have measured longitudinal and transverse magnetoresistance (MR) of crystalline pseudo-binary alloys FexNi80-xCr20 (50
Resumo:
Highly textured, as-deposited La0.6Pb0.4MnO3 thin films have been grown on LaAlO3 by pulsed laser deposition. The films are ferromagnetic metals below 300 K. Giant negative magnetoresistance of over 40% is observed at 300 K at 6 T.
Resumo:
We present a comparative study of the low temperature electrical transport properties of the carbon matrix containing iron nanoparticles and the films. The conductivity of the nanoparticles located just below the metal-insulator transition exhibits metallic behavior with a logarithmic temperature dependence over a large temperature interval. The zero-field conductivity and the negative magnetoresistance, showing a characteristic upturn at liquid helium temperature, are consistently explained by incorporating the Kondo relation and the two dimensional electron-electron interaction. The films, in contrast, exhibit a crossover of the conductivity from power-law dependence at high temperatures to an activated hopping law dependence in the low temperature region. The transition is attributed to changes in the energy dependence of the density of states near the Fermi level. The observed magnetoresistance is discussed in terms of quantum interference effect on a three-dimensional variable range hopping mechanism.
Resumo:
Iron nanoparticles are embedded in multiwall carbon nanotubes by the chemical vapor deposition, where benzene and ferrocene are taken as precursor materials. Varying quantity of iron particles are embedded in these tubes by taking different amount of ferrocene. These particles exhibit a magnetic moment up to 98 emu/g and an enhanced coercivity in the range of 500-2000 Oe. Negative magnetoresistance similar to 10% is observed in the presence of magnetic field up to 11 T applied at various temperatures in the range of 1.3 K-300 K. It is argued that the enhanced coercivity is due to the shape anisotropy. The negative magnetoresistance is believed to be due to the weak localization and spin dependent scattering of electrons by the ferromagnetic particles. In addition we also observe a dependence of the magnetoresistance on the direction of applied field and this is correlated with the shape anisotropy of the Fe particles.
Resumo:
We have studied magneto-transport and optical properties of Ga1-xMnxSb crystals (x = 0.01, 0.02, 0.03 and 0.04) grown by horizontal Bridgman method. Negative magnetoresistance and anomalous Hall effect have been observed below 10K. Temperature dependence of magnetization measurement shows a magnetic ordering below 10K which could arise from Ga1-xMnxSb alloy formation. Also, saturation in magnetization observed even at room temperature suggests the existence of ferromagnetic MnSb clusters. Reduction in band gap is observed with increasing Mn concentration in the crystals. Temperature dependence of band gap follows Bose-Einstein's model.
Resumo:
The transmission electron microscopy images of in situ prepared multiwall carbon nanotubes (MWNTs)and polyaniline (PANI) composites show that nanotubes are well dispersed in aqueous medium, and the nanofibers of PANI facilitate intertube transport. Although low temperature transport indicates variable range hopping (VRH) mechanism, the dc and ac conductivity become temperature independent as the MWNT content increases. The onset frequency for the increase in conductivity is observed to be strongly dependent on the MWNT weight percent, and the ac conductivity can be scaled onto a master curve. The negative magnetoresistance is attributed to the forward interference scattering mechanism in VRH transport. (C) 2010 American.
Resumo:
We report magnetization and magnetoresistance studies of the geometrically frustrated spinel compound LiMn2O4 near its charge ordering temperature. The effect of a 7 T magnetic field is to very slightly shift the transition in the resistivity to lower temperatures resulting in large negative magnetoresistance with significant hysteresis. This hysteresis is not reflected in the magnetization. These observations are compared with what is found in the colossal magnetoresistance and charge ordering perovskite manganese oxides. The manner in which geometric frustration influences the coupling of charge and spin degrees of freedom is examined.
Resumo:
Polyaniline/ZnFe2O4 nanocomposites were synthesized by a simple and inexpensive one-step in situ polymerization method in the presence of ZnFe2O4 nanoparticles. The structural, morphological, and electrical properties of the samples were characterized by wide angle X-ray diffraction (WAXD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). WAXD and SEM revealed the formation of polyaniline/ZnFe2O4 nanocomposites. Infrared spectroscopy indicated that there was some interaction between the ZnFe2O4 nanoparticles and polyaniline. The dc electrical conductivity measurements were carried in the temperature range of 80 to 300 K. With increase in the doping concentration of ZnFe2O4, the conductivity of the nanocomposites found to be decreasing from 5.15 to 0.92 Scm(-1) and the temperature dependent resistivity follows ln rho(T) similar to T-1/2 behavior. The nanocomposites (80 wt % of ZnFe2O4) show a more negative magnetoresistance compared with that of pure polyaniline (PANI). These results suggest that the interaction between the polymer matrix PANI and zinc nanoparticles take place in these nanocomposites. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci 120: 2856-2862, 2011
Resumo:
Two topical subjects related with the effect of magnetic field on electrical conduction and the metal-insulator transition are discussed. The first topic is an electronic phase transition in graphite, which is interpreted as a manifestation of a nestingtype instability inherent to a one-dimensional narrow Landau sub-band. The second topic is spin-dependent tranport in III-V based diluted magnetic semiconductors; in particular, a large negative magnetoresistance observed in the vicinity of metal-nonmetal transition.
Resumo:
A detailed study of the layered manganite La1+xSr2-xMn2O7 has been performed, establishing that within the composition range 0.1 less than or equal to x less than or equal to 0.45 the phases crystallize in the I4/mmm space group. The evolution of structural parameters with x: in this composition range has been followed using a novel application of an existing program for the Rietveld analysis of powder diffraction data. The structure, a familiar intergrowth of rock-salt (La,Sr)O slabs and double perovskite (La,Sr)(2)Mn2O6 units, is characterized by a reluctance to deform the latter. This manifests as a ''pumping'' of the larger Sr-II ion into the 12-coordinate site of the structure as x is increased. We report these features of the structure as well as electrical transport and magnetic properties, in light of recent observations of giant, negative magnetoresistance in these systems.
Resumo:
We report an anomalous magnetostriction behavior of the charge ordered compound Nd0.5Sr0.5MnO3. We have found that the applied magnetic field not only gives rise to a large negative magnetoresistance but also produces a huge positive magnetovolume effect. This unusual effect is explained considering that the applied magnetic field induces a structural transition at which the volume drastically increases. This effect is also seen in the anisotropic magnetostriction which shows clear anomalies at the field induced transition.
Resumo:
Ordered double perovskite oxides of the general formula A2BB′O6 have been known for several decades to have interesting electronic and magnetic properties. However, a recent report of a spectacular negative magnetoresistance effect in a specific member of this family, namely Sr2FeMoO6, has brought this class of compounds under intense scrutiny. It is now believed that the origin of the magnetism in this class of compounds is based on a novel kinetically-driven mechanism. This new mechanism is also likely to be responsible for the unusually high temperature ferromagnetism in several other systems, such as dilute magnetic semiconductors, as well as in various half-metallic ferromagnetic systems, such as Heussler alloys.
Resumo:
We have synthesized ceramics of A2FeReO6 double-perovskites A2FeReO6 (A=Ba, Ca). Structural characterizations indicate a cubic structure with a=8.0854(1) Å for Ba2FeReO6 and a distorted monoclinic symmetry with a=5.396(1) Å, b=5.522(1) Å, c=7.688(2) Å and β=90.4° for Ca2FeReO6. The barium compound is metallic from 5K to 385K, i.e. no metal-insulator transition has been seen up to 385K, and the calcium compound is semiconducting from 5K to 385K. Magnetization measurements show a ferrimagnetic behavior for both materials, with Tc =315 K for Ba2FeReO6 and above 385K for Ca2FeReO6. At 5K we observed, only for Ba2FeReO6, a negative magnetoresistance of 10% in a magnetic field of 5T. Electrical, magnetic and thermal properties are discussed and compared to those of the analogous compounds Sr2Fe(Mo,Re)O6 recently studied.
Resumo:
We present the synthesis and properties of iodine incorporated amorphous carbon films. Optical studies depict a decrease in band gap with variation in iodine content and pyrolysis temperature. Tuning of the metal-insulator transition is achieved by varying the pyrolysis temperature and iodine concentration. Appreciable decrease in magnetoresistance is observed with iodine incorporation, but negative magnetoresistance typical behavior of metallic samples is not witnessed.