18 resultados para Monitoring urban growth
Resumo:
Urban growth identification, quantification, knowledge of rate and the trends of growth would help in regional planning for better infrastructure provision in environmentally sound way. This requires analysis of spatial and temporal data, which help in quantifying the trends of growth on spatial scale. Emerging technologies such as Remote Sensing, Geographic Information System (GIS) along with Global Positioning System (GPS) help in this regard. Remote sensing aids in the collection of temporal data and GIS helps in spatial analysis. This paper focuses on the analysis of urban growth pattern in the form of either radial or linear sprawl along the Bangalore - Mysore highway. Various GIS base layers such as builtup areas along the highway, road network, village boundary etc. were generated using collateral data such as the Survey of India toposheet, etc. Further, this analysis was complemented with the computation of Shannon's entropy, which helped in identifying prevalent sprawl zone, rate of growth and in delineating potential sprawl locations. The computation Shannon's entropy helped in delineating regions with dispersed and compact growth. This study reveals that the Bangalore North and South taluks contributed mainly to the sprawl with 559% increase in built-up area over a period of 28 years and high degree of dispersion. The Mysore and Srirangapatna region showed 128% change in built-up area and a high potential for sprawl with slightly high dispersion. The degree of sprawl was found to be directly proportional to the distances from the cities.
Resumo:
Urbanisation is a dynamic complex phenomenon involving large scale changes in the land uses at local levels. Analyses of changes in land uses in urban environments provide a historical perspective of land use and give an opportunity to assess the spatial patterns, correlation, trends, rate and impacts of the change, which would help in better regional planning and good governance of the region. Main objective of this research is to quantify the urban dynamics using temporal remote sensing data with the help of well-established landscape metrics. Bangalore being one of the rapidly urbanising landscapes in India has been chosen for this investigation. Complex process of urban sprawl was modelled using spatio temporal analysis. Land use analyses show 584% growth in built-up area during the last four decades with the decline of vegetation by 66% and water bodies by 74%. Analyses of the temporal data reveals an increase in urban built up area of 342.83% (during 1973-1992), 129.56% (during 1992-1999), 106.7% (1999-2002), 114.51% (2002-2006) and 126.19% from 2006 to 2010. The Study area was divided into four zones and each zone is further divided into 17 concentric circles of 1 km incrementing radius to understand the patterns and extent of the urbanisation at local levels. The urban density gradient illustrates radial pattern of urbanisation for the period 1973-2010. Bangalore grew radially from 1973 to 2010 indicating that the urbanisation is intensifying from the central core and has reached the periphery of the Greater Bangalore. Shannon's entropy, alpha and beta population densities were computed to understand the level of urbanisation at local levels. Shannon's entropy values of recent time confirms dispersed haphazard urban growth in the city, particularly in the outskirts of the city. This also illustrates the extent of influence of drivers of urbanisation in various directions. Landscape metrics provided in depth knowledge about the sprawl. Principal component analysis helped in prioritizing the metrics for detailed analyses. The results clearly indicates that whole landscape is aggregating to a large patch in 2010 as compared to earlier years which was dominated by several small patches. The large scale conversion of small patches to large single patch can be seen from 2006 to 2010. In the year 2010 patches are maximally aggregated indicating that the city is becoming more compact and more urbanised in recent years. Bangalore was the most sought after destination for its climatic condition and the availability of various facilities (land availability, economy, political factors) compared to other cities. The growth into a single urban patch can be attributed to rapid urbanisation coupled with the industrialisation. Monitoring of growth through landscape metrics helps to maintain and manage the natural resources. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Rapid and invasive urbanization has been associated with depletion of natural resources (vegetation and water resources), which in turn deteriorates the landscape structure and conditions in the local environment. Rapid increase in population due to the migration from rural areas is one of the critical issues of the urban growth. Urbanisation in India is drastically changing the land cover and often resulting in the sprawl. The sprawl regions often lack basic amenities such as treated water supply, sanitation, etc. This necessitates regular monitoring and understanding of the rate of urban development in order to ensure the sustenance of natural resources. Urban sprawl is the extent of urbanization which leads to the development of urban forms with the destruction of ecology and natural landforms. The rate of change of land use and extent of urban sprawl can be efficiently visualized and modelled with the help of geo-informatics. The knowledge of urban area, especially the growth magnitude, shape geometry, and spatial pattern is essential to understand the growth and characteristics of urbanization process. Urban pattern, shape and growth can be quantified using spatial metrics. This communication quantifies the urbanisation and associated growth pattern in Delhi. Spatial data of four decades were analysed to understand land over and land use dynamics. Further the region was divided into 4 zones and into circles of 1 km incrementing radius to understand and quantify the local spatial changes. Results of the landscape metrics indicate that the urban center was highly aggregated and the outskirts and the buffer regions were in the verge of aggregating urban patches. Shannon's Entropy index clearly depicted the outgrowth of sprawl areas in different zones of Delhi. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Urban sprawl is the outgrowth along the periphery of cities and along highways. Although an accurate definition of urban sprawl may be debated, a consensus is that urban sprawl is characterized by an unplanned and uneven pattern of growth, driven by multitude of processes and leading to inefficient resource utilization. Urbanization in India has never been as rapid as it is in recent times. As one of the fastest growing economies in the world, India faces stiff challenges in managing the urban sprawl, while ensuring effective delivery of basic services in urban areas. The urban areas contribute significantly to the national economy (more than 50% of GDP), while facing critical challenges in accessing basic services and necessary infrastructure, both social and economic. The overall rise in the population of the urban poor or the increase in travel times due to congestion along road networks are indicators of the effectiveness of planning and governance in assessing and catering for this demand. Agencies of governance at all levels: local bodies, state government and federal government, are facing the brunt of this rapid urban growth. It is imperative for planning and governance to facilitate, augment and service the requisite infrastructure over time systematically. Provision of infrastructure and assurance of the delivery of basic services cannot happen overnight and hence planning has to facilitate forecasting and service provision with appropriate financial mechanisms.
Resumo:
Urbanisation is the increase in the population of cities in proportion to the region's rural population. Urbanisation in India is very rapid with urban population growing at around 2.3 percent per annum. Urban sprawl refers to the dispersed development along highways or surrounding the city and in rural countryside with implications such as loss of agricultural land, open space and ecologically sensitive habitats. Sprawl is thus a pattern and pace of land use in which the rate of land consumed for urban purposes exceeds the rate of population growth resulting in an inefficient and consumptive use of land and its associated resources. This unprecedented urbanisation trend due to burgeoning population has posed serious challenges to the decision makers in the city planning and management process involving plethora of issues like infrastructure development, traffic congestion, and basic amenities (electricity, water, and sanitation), etc. In this context, to aid the decision makers in following the holistic approaches in the city and urban planning, the pattern, analysis, visualization of urban growth and its impact on natural resources has gained importance. This communication, analyses the urbanisation pattern and trends using temporal remote sensing data based on supervised learning using maximum likelihood estimation of multivariate normal density parameters and Bayesian classification approach. The technique is implemented for Greater Bangalore – one of the fastest growing city in the World, with Landsat data of 1973, 1992 and 2000, IRS LISS-3 data of 1999, 2006 and MODIS data of 2002 and 2007. The study shows that there has been a growth of 466% in urban areas of Greater Bangalore across 35 years (1973 to 2007). The study unravels the pattern of growth in Greater Bangalore and its implication on local climate and also on the natural resources, necessitating appropriate strategies for the sustainable management.
Resumo:
Urbanisation has evinced interest from a wide section of the society including experts, amateurs, and novices. The multidisciplinary scope of the subject invokes the interest from ecologists, to urban planners and civil engineers, to sociologists, to administrators and policy makers, students and finally the common man. With the development and infrastructure initiatives mostly around the urban centres, the impacts of urbanisation and sprawl would be on the environment and the natural resources. The wisdom lies in how effectively we plan the urban growth without - hampering the environment, excessively harnessing the natural resources and eventually disturbing the natural set-up. The research on these help urban residents and policymakers make informed decisions and take action to restore these resources before they are lost. Ultimately the power to balance the urban ecosystems rests with regional awareness, policies, administration practices, management issues and operational problems. This publication on urban systems is aimed at helping scientists, policy makers, engineers, urban planners and ultimately the common man to visualise how towns and cities grow over a period of time based on investigations in the regions around the highway and cities. Two important highways in Karnataka, South India, viz., Bangalore - Mysore highway and the Mangalore - Udupi highway, in Karnataka and the Tiruchirapalli - Tanjavore - Kumbakonam triangular road network in Tamil Nadu, South India, were considered in this investigation. Geographic Information System and Remote Sensing data were used to analyse the pattern of urbanisation. This was coupled with the spatial and temporal data from the Survey of India toposheets (for 1972), satellite imageries procured from National Remote Sensing Agency (NRSA) (LANDSAT TM for 1987 and IRS LISS III for 1999), demographic details from the Census of India (1971, 1981, 1991 and 2001) and the village maps from the Directorate of Survey Settlements and Land Records, Government of Karnataka. All this enabled in quantifying the increase in the built-up area for nearly three decades. With intent of identifying the potential sprawl zones, this could be modelled and projected for the future decades. Apart from these the study could quantify some of the metrics that could be used in the study of urban sprawl.
Resumo:
Rapid urbanisation in India has posed serious challenges to the decision makers in regional planning involving plethora of issues including provision of basic amenities (like electricity, water, sanitation, transport, etc.). Urban planning entails an understanding of landscape and urban dynamics with causal factors. Identifying, delineating and mapping landscapes on temporal scale provide an opportunity to monitor the changes, which is important for natural resource management and sustainable planning activities. Multi-source, multi-sensor, multi-temporal, multi-frequency or multi-polarization remote sensing data with efficient classification algorithms and pattern recognition techniques aid in capturing these dynamics. This paper analyses the landscape dynamics of Greater Bangalore by: (i) characterisation of direct impervious surface, (ii) computation of forest fragmentation indices and (iii) modeling to quantify and categorise urban changes. Linear unmixing is used for solving the mixed pixel problem of coarse resolution super spectral MODIS data for impervious surface characterisation. Fragmentation indices were used to classify forests – interior, perforated, edge, transitional, patch and undetermined. Based on this, urban growth model was developed to determine the type of urban growth – Infill, Expansion and Outlying growth. This helped in visualising urban growth poles and consequence of earlier policy decisions that can help in evolving strategies for effective land use policies.
Resumo:
The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications.
Resumo:
The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications. (C) 2005 Elsevier B. V. All rights reserved.
Resumo:
Urban lakes form vital ecosystems supporting livelihood with social, economic and aesthetic benefits that are essential for quality life. This depends on the biotic and abiotic components in an ecosystem. The structure of an ecosystem forms a decisive factor in sustaining its functional abilities which include nutrient cycling, oxygen production, etc. A community assemblage of primary producers (algae) plays a crucial role in maintaining the balance as they form the base of energy pyramid in the ecosystem. Algae assimilate carbon in the environment via photosynthetic activities and releases oxygen for the next level of biotic elements in an ecosystem. Besides these, algal cells rich in protein serve as food and feed, used as manure and for production of biofuels. Understanding algal photosynthetic dynamics helps in assessing the level of dissolved oxygen (DO), food (fish, etc.), waste assimilation, etc. Algal chlorophyll content, algal biomass, primary productivity and algal photosynthetic quotient are some of the parameters that help in assessing the status of urban lakes. Chlorophyll content gives a measure of the growth, spread and quantity of algae. Unplanned rapid urbanization in Bangalore in recent times has resulted in either disappearance of lake ecosystems or deteriorated the lake water quality impairing the ecological processes. This paper computes algal growth, community structure, primary productivity and composition for three major lakes (T G Halli, Bellandur and Varthur lakes) under contrast levels of anthropogenic influences.
Resumo:
Bangalore is experiencing unprecedented urbanisation and sprawl in recent times due to concentrated developmental activities with impetus on industrialisation for the economic development of the region. This concentrated growth has resulted in the increase in population and consequent pressure on infrastructure, natural resources and ultimately giving rise to a plethora of serious challenges such as climate change, enhanced green-house gases emissions, lack of appropriate infrastructure, traffic congestion, and lack of basic amenities (electricity, water, and sanitation) in many localities, etc. This study shows that there has been a growth of 632% in urban areas of Greater Bangalore across 37 years (1973 to 2009). Urban heat island phenomenon is evident from large number of localities with higher local temperatures. The study unravels the pattern of growth in Greater Bangalore and its implication on local climate (an increase of ~2 to 2.5 ºC during the last decade) and also on the natural resources (76% decline in vegetation cover and 79% decline in water bodies), necessitating appropriate strategies for the sustainable management.
Resumo:
Urban population is growing at around 2.3 percent per annum in India. This is leading to urbanisation and often fuelling the dispersed development in the outskirts of urban and village centres with impacts such as loss of agricultural land, open space, and ecologically sensitive habitats. This type of upsurge is very much prevalent and persistent in most places, often inferred as sprawl. The direct implication of such urban sprawl is the change in land use and land cover of the region and lack of basic amenities, since planners are unable to visualise this type of growth patterns. This growth is normally left out in all government surveys (even in national population census), as this cannot be grouped under either urban or rural centre. The investigation of patterns of growth is very crucial from regional planning point of view to provide basic amenities in the region. The growth patterns of urban sprawl can be analysed and understood with the availability of temporal multi-sensor, multi-resolution spatial data. In order to optimise these spectral and spatial resolutions, image fusion techniques are required. This aids in integrating a lower spatial resolution multispectral (MSS) image (for example, IKONOS MSS bands of 4m spatial resolution) with a higher spatial resolution panchromatic (PAN) image (IKONOS PAN band of 1m spatial resolution) based on a simple spectral preservation fusion technique - the Smoothing Filter-based Intensity Modulation (SFIM). Spatial details are modulated to a co-registered lower resolution MSS image without altering its spectral properties and contrast by using a ratio between a higher resolution image and its low pass filtered (smoothing filter) image. The visual evaluation and statistical analysis confirms that SFIM is a superior fusion technique for improving spatial detail of MSS images with the preservation of spectral properties.
Resumo:
In this paper we propose a concept and report experimental results based on a circular array of Piezoelectric Wafer Active Sensors (PWASs) for rapid localization and parametric identification of corrosion type damage in metallic plates. Implementation of this circular array of PWASs combines the use of ultrasonic Lamb wave propagation technique and an algorithm based on symmetry breaking in the signal pattern to locate and monitor the growth of a corrosion pit on a metallic plate. Wavelet time-frequency maps of the sensor signals are employed to obtain an insight regarding the effect of corrosion growth on the Lamb wave transmission in time-frequency scale. We present here a method to eliminate the time scale, which helps in identifying easily the signature of damage in the measured signals. The proposed method becomes useful in determining the approximate location of the damage with respect to the location of three neighboring sensors in the circular array. A cumulative damage index is computed from the wavelet coefficients for varying damage sizes and the results appear promising. Damage index is plotted against the damage parameters for frequency sweep of the excitation signal (a windowed sine signal). Results of corrosion damage are compared with circular holes of various sizes to demonstrate the applicability of present method to different types of damage. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Bangalore is one of the fastest growing cities in India and is branded as ‘Silicon Valley of India’ for heralding and spearheading the growth of Information Technology (IT) based industries in the country. With the advent and growth of IT industry, as well as numerous industries in other sectors and the onset of economic liberalisation since the early 1990s, Bangalore has taken lead in service-based industries fuelling substantial growth of the city both economically and spatially. Bangalore has become a cosmopolitan city attracting people and business alike, within and across nations. This profile notes the urban setting and provides an overview of the urban fabric, while discussing various prospects related to infrastructure and governance (Sudhira, et al. 2007).
Resumo:
The acoustic emission technique is used for monitoring the fatigue crack growth in plain concrete beams under three-point loading. Variable amplitude loading with step-wise increase in the maximum load is applied. The fatigue crack growth is continuously monitored using six acoustic sensors. The results of load, displacement, crack mouth opening displacement, acoustic events, and acoustic energy are simultaneously acquired during the test. It is seen that a Paris law type of relationship exists between the rate of increase of acoustic emission count per cycle and the stress intensity factor range. Using b-value analysis, different stages of fatigue fracture is explained. (C) 2012 Elsevier Ltd. All rights reserved.