205 resultados para Mixed-orientation marriage
Resumo:
NMR studies of methyldichlorophosphine have been undertaken in the nematic phase of mixed liquid crystals of opposite diamagnetic anisotropies. The rα structure is derived. The proton chemical-shift anisotropy has been determined from the studies without the use of a reference compound and without a change of experimental conditions. It is shown that the molecule orients in the liquid crystal with positive diamagnetic anisotropy in such a way that the C3 symmetry axis of the CH3P moiety is preferentially aligned perpendicular to the direction of the magnetic field, unlike other similar systems. This is interpreted in terms of the formation of a weak solvent-solute molecular complex. The heteronuclear indirect spin-spin coupling constants are determined. The sign of the two-bond JPH is found to be positive.
Resumo:
DNA triple helices containing two purine strands and one pyrimidine strand (C.G*G and T.A*A) have been studied, using model building followed by energy minimisation, for different orientations of the third strand resulting from variation in the hydrogen bonding between the Watson-Crick duplex and the third strand and the glycosidic torsion angle in the third strand. Our results show that in the C.G*G case the structure with a parallel orientation of the third strand, resulting from Hoogsteen hydrogen bonds between the third strand and the Watson-Crick duplex, is energetically the most favourable while in the T.A*A case the antiparallel orientation of the third strand, resulting from reverse Hoogsteen hydrogen bonds, is energetically the most favourable. These studies when extended to the mixed sequence triplexes, in which the second strand is a mixture of G and A, correspondingly the third strand is a mixture of G and APT, show that though the parallel orientation is still energetically more favourable, the antiparallel orientation becomes energetically comparable with an increasing number of thymines in the third strand. Structurally, for the mixed triplexes containing G and T in the third strand, it is seen that the basepair non-isomorphism between the C.G*G and the T.A*T triplets can be overcome with some changes in the base pair parameters without much distortion of either the backbone or the hydrogen bonds.
Resumo:
The problem of mixed convection from vertical surfaces in a porous medium saturated with a power-law type non-Newtonian fluid is investigated. The transformed conservation laws are solved numerically for the case of variable wall temperature conditions. Results for the details of the velocity and temperature fields as well as the Nusselt number have been presented. The viscosity index ranged from 0.5-2.0.
Resumo:
Adopting a two-temperature and two-velocity model, appropriate to a bidisperse porous medium (BDPM) proposed by Nield and Kuznetsov (2008), the classical steady, mixed convection boundary layer flow about a horizontal, isothermal circular cylinder embedded in a porous medium has been theoretically studied in this article. It is shown that the boundary layer analysis leads to expressions for the flow and heat transfer characteristics in terms of an inter-phase momentum parameter, a thermal diffusivity ratio, a thermal conductivity ratio, a permeability ratio, a modified thermal capacity ratio, and a buoyancy or mixed convection parameter. The transformed partial differential equations governing the flow and heat transfer in the f-phase (the macro-pores) and the p-phase (the remainder of the structure) are solved numerically using a very efficient implicit finite-difference technique known as Keller-box method. A good agreement is observed between the present results and those known from the open literature in the special case of a traditional Darcy formulation (monodisperse system).
Resumo:
The temperature and frequency dependence of dielectric permittivity and dielectric loss of nanosized Mn1-xZnxFe2O4 (for x = 0, 0.2, 0.4, 0.6, 0.8, 1) were investigated. The impact of zinc substitution on the dielectric properties of the mixed ferrite is elucidated. Strong dielectric dispersion and broad relaxation were exhibited by Mn1-xZnxFe2O4. The variation of dielectric relaxation time with temperature suggests the involvement of multiple relaxation processes. Cole-Cole plots were employed as an effective tool for studying the observed phenomenon. The activation energies were calculated from relaxation peaks and Cole-Cole plots and found to be consistent with each other and indicative of a polaron conduction.
Resumo:
Turbulent mixed convection flow and heat transfer in a shallow enclosure with and without partitions and with a series of block-like heat generating components is studied numerically for a range of Reynolds and Grashof numbers with a time-dependent formulation. The flow and temperature distributions are taken to be two-dimensional. Regions with the same velocity and temperature distributions can be identified assuming repeated placement of the blocks and fluid entry and exit openings at regular distances, neglecting the end wall effects. One half of such module is chosen as the computational domain taking into account the symmetry about the vertical centreline. The mixed convection inlet velocity is treated as the sum of forced and natural convection components, with the individual components delineated based on pressure drop across the enclosure. The Reynolds number is based on forced convection velocity. Turbulence computations are performed using the standard k– model and the Launder–Sharma low-Reynolds number k– model. The results show that higher Reynolds numbers tend to create a recirculation region of increasing strength in the core region and that the effect of buoyancy becomes insignificant beyond a Reynolds number of typically 5×105. The Euler number in turbulent flows is higher by about 30 per cent than that in the laminar regime. The dimensionless inlet velocity in pure natural convection varies as Gr1/3. Results are also presented for a number of quantities of interest such as the flow and temperature distributions, Nusselt number, pressure drop and the maximum dimensionless temperature in the block, along with correlations.
Resumo:
We study a zero sum differential game of mixed type where each player uses both control and stopping times. Under certain conditions we show that the value function for this problem exists and is the unique viscosity solution of the corresponding variational inequalities. We also show the existence of saddle point equilibrium for a special case of differential game.
Resumo:
We show that the results of Lüty and Ortiz-Lopez relating the cyanide reorientation rates to the high-temperature phase diagrams of alkali-halide-alkali-cyanide mixed crystals can be understood within simple mean-field theory.
Resumo:
LIII absorption edge measurements clearly delineate 3+ and 4+ states of Ce. Absorption edges of 3+ compounds show a single peak, while those of 4+ compounds show two peaks, both appearing at higher energies than the characteristic peaks of 3+ compounds. In systems where there is interconfigurational fluctuation, features due to both 3+ and 4+ states are distinctly seen.
Resumo:
Mossbauer effect and X-ray measurements are carried out on product samples of the thermogravimetric analysis (TGA) and isothermal decomposition in hydrogen of homogeneously mixed ferrous nickel oxalates with different iron to nickel ratios. The formation of Fe-Ni alloy is obtained at considerably lower temperatures (z 300 "C) in each case. The Fe-Ni alloys obtained shift from iron-rich to nickel-rich composition as the nickel ratio in the mixed metal oxalates is increased. The formation of Pe-Ni Invar from mixed metal oxalate with Fe:Ni = 1:l is indicated in the early stages but not from those with Fe:Ni = 2: 1 or 64:36. An Produktproben von homogen verteilten Eisen-Nickeloxalaten mit unterschiedlichem Eisen- Nickel-Verhaltnis nach thermogravimetrischer Analyse (TGA) und isothermem Zerfall in Wasserst off werden Mollbauereffekt- und Rontgenmessnngen durchgefuhrt. In allen Fiillen wird die Bildung der Fe-Ni-Legierung bei betriichtlich niedrigeren Temperaturen (= 300 "C) erhalten. Die erhaltenen Fe-Ni-Legierungen verschieben sich von der eisenreichen zur nickelreichen Zusrtmmensetzung, wenn das Nickelverhaltnis in dem BIetall-Mischoxalat erhoht wird. Die Bildung der Fe-Ni-lnvar-Legierung aus dem Metall-Mischoxalat mit Fe:Ni = 1 : 1 wird in fruhen Zu Zustanden beobachtet, iedoch nicht aus Oxalaten mit Fe:Ni = 2:1 oder 64:36.
Resumo:
Mixed ligand complexes of the type Ni(R-AB)(AC') and Ni(R-AC)(AB') where AB/AC denote N-bonded isonitroso- [3-ketoimino ligands, AB'/AC' denote the corresponding Obonded ligands and R = Me, Et, n-Pr are synthesised and characterised. The complexes are neutral with square planar geometry around nickel(II). The bonding isomerism of the isonitroso group is discussed on the basis of i.r. and 1H n.m.r. studies. The crystal structure of the title complex, Ni(n-Pr-IEAI)(IMAI') has been determined from diffractometer data by Patterson and Fourier methods and refined by least squares to R = 0.088 for 2209 observed reflections. Unit cell constants are: a = 11.945(2), b = 22.436(7), c = 13.248(5) ~, [3 = 95.13(2) ~ The space group is P2Jc with Z = 8. Niekel(II) has a square planar coordination of two imine nitrogens, an isonitroso-nitrogen (from n-Pr-IEAI) and another isonitrosooxygen (from IMAI').
Resumo:
1H NMR spin-lattice relaxation time (T1) studies have been carried out in the temperature range 100 K to 4 K, at two Larmor frequencies 11.4 and 23.3 MHz, in the mixed system of betaine phosphate and glycine phosphite (BPxGPI(1-x)), to study the effects of disorder on the proton group dynamics. Analysis of T1 data indicates the presence of a number of inequivalent methyl groups and a gradual transition from classical reorientations to quantum tunneling rotations. At lower temperatures, microstructural disorder in the local environments of the methyl groups, result in a distribution in the activation energy (Ea) and the torsional energy gap (E01). For certain values of x, the magnetisation recovery shows biexponential behaviour at lower temperatures.
Resumo:
We show that the large anomalous Hall constants of mixed-valence and Kondo-lattice systems can be understood in terms of a simple resonant-level Fermi-liquid model. Splitting of a narrow, orbitally unquenched, spin-orbit split, f resonance in a magnetic field leads to strong skew scattering of band electrons. We interpret both the anomalous signs and the strong temperature dependence of Hall mobilities in CeCu2Si2, SmB6, and CePd3 in terms of this theory.
Resumo:
The host-guest technique has been applied to the determination of the helix-coil stability constants of two naturally occurring amino acids, L-alanine and L-leucine, in a nonaqueous solvent system. Random copolymers containing L-alanine and L-leucine, respectively, as guest residues and -benzyl-L-glutamate as the host residue were synthesized. The polymers were fractionated and characterized for their amino acid content, molecular weight, and helix-coil transition behavior in a dichloroacetic acid (DCA)-1,2-dichloroethane (DCE) mixture. Two types of helix-coil transitions were carried out on the copolymers: solvent-induced transitions in DCA-DCE mixtures at 25°C and thermally induced transitions in a 82:18 (wt %) DCA-DCE mixture. The thermally induced transitions were analyzed by statistical mechanical methods to determine the Zimm-Bragg parameters, and s, of the guest residues. The experimental data indicate that, in the nonaqueous solvent, the L-alanine residue stabilizes the -helical conformation more than the L-leucine residue does. This is in contrast to their behavior in aqueous solution, where the reverse is true. The implications of this finding for the analysis of helical structures in globular proteins are discussed.
Resumo:
Two new three-dimensional metal-organic frameworks (MOFs) [Mn-2(mu(3)-OH)(H2O)(2)(BTC)]-2 H2O, I, and [NaMn(BTC)], II (BTC=1,2,4-benzenetricarboxylate = trimellitate) were synthesized and their structures determined by single-crystal X-ray diffraction (XRD). In I, the Mn-4 cluster, [Mn-4(mu(5)-OH)(2)(H2O)(4)O-12], is connected with eight trimellitate anions and each trimellitate anion connects to four different Mn-4 clusters, resulting in a fluorite-like structure. In II, the Mn2O8 dimer is connected with two Na+ ions through carboxylate oxygen to form mixed-metal distorted Kagome-related two-dimensional -M-O-M- layers, which are pillared by the trimellitate anions forming the three-dimensional structure. The extra-framework water molecules in I are reversibly adsorbed and are also corroborated by powder XRD studies. The formation of octameric water clusters involving free and coordinated water molecules appears to be new. Interesting magnetic behavior has been observed for both compounds. Electron spin resonance (ESR) studies indicate a broadening of the signal below the ordering temperature and appear to support the findings of the magnetic studies.