58 resultados para Methylacyl-coa-racemase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treatment of rats with Adriamycin caused an increase in the incorporation into hepatic cholesterol of [1-14C] acetate, but not of [2-14C] mevalonate. The step affected was found to be 3-hydroxy-3-methylglutaryl CoA reductase whose activity in the liver microsomes increased in Adriamycin-treated animals, but was inhibited when the drug was added in the assay medium. Also, the concentration of ubiquinone in the liver and of cholesterol in the plasma increased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The depressed activity of hepatic 3-hydroxy-3-methylglutaryl CoA reductase in starved or cholesterol fed rats was stimulated on intraperitoneally administering small quantities of ATP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of palmitoyl-CoA synthetase (EC 6.2.1.3) in the brush borderfree particulate fraction of chicken intestinal mucosa is demonstrated. The enzyme was dependent on the simultaneous presence of lysophosphatidylcholine and Triton X-100 as well as ATP, CoA and Mg2+ for maximal activity. Lysophosphatidylcholine could not be replaced by other lipids. Enzyme preparations solubilized by Triton X-100 or lysophosphatidylcholine were still dependent on the presence of detergents for maximal activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A concentration dependent inhibition of 3-hydroxy-3-methylglutaryl CoA (HMG CoA) reductase was found on preincubation of microsomal preparations with diallyl disulfide, a component of garlic oil. This inhibited state was only partially reversed even with high concentrations of DTT. Glutathione, a naturally occurring reducing thiol agent, was ineffective. The substrate, HMG CoA, but not NADPH, was able to give partial protection for the DTT-dependent, but not glutathione-dependent activity. The garlic-derived diallyl disulfide is the most effective among the sulfides tested for inhibition of HMG CoA reductase. Formation of protein internal disulfides, inaccessible for reduction by thiol agents, but not of protein dimer, is likely to be the cause of this inactivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A concentration-dependent inactivation of 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase was found on reincubation of rat liver microsomal preparations with H2O2 and at lower concentrations in the presence of KCN which inhibited the contaminating catalase. The inactivation was not affected in the presence quenchers of hydroxyl radicals and singlet oxygen and was also obtained when H2O2 was added during the reaction. HMG-CoA, but not NADPH, partially protected the enzyme from H2O2-inactivation. Even at high concentration DTT was unable to reverse this inactivation. The soluble 50 kDa-enzyme was similarly inactivated by H2O2, and the tryptic-digest of the inactivated protein indicated the presence of a disulfide-containing peptide. The results support the view that H2O2 by directly acting on the catalytic domain possibly converts an active thiol group to an inaccessible disulfide and irreversibly HMG-CoA reductase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treatment with diallyl disulfide, a constituent of garlic oil, irreversibly inactivated microsomal and a soluble 50 kDa form of HMG-CoA reductase. No radioactivity was found to be protein-bound on treating the soluble enzyme with [35S]diallyl disulfide, indicating the absence of the mixed disulfide of the type allyl-S-S-protein. SDS-PAGE and Western blot analyses of the diallyl-disulfide-treated protein showed no traces of the dimer of the type protein-S-S-protein, but clearly indicated BME-reversible increased mobility, as expected of an intramolecular protein disulfide. The sulfhydryl groups, as measured by alkylation with iodo[2-14C]acetic acid, were found to decrease in the diallyl-disulfide-treated enzyme protein. Tryptic peptide analysis also gave support for the possible presence of disulfide-containing peptides in such a protein. It appears that diallyl disulfide inactivated HMG-CoA reductase by forming an internal protein disulfide that became inaccessible for reduction by DTT, and thereby retaining the inactive state of the enzyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On repeated thawing at room temperature of frozen preparations of heavy microsomes from rat livers, HMGCoA reductase activity was solubilized due to limited proteolysis. This soluble enzyme was partially purified by fractionation with ammonium sulfate and filtration on Sephacryl S-200 column. The active enzyme was coeluted with a major 92 kDa-protein and was identified as a 58kDa-protein after separation by SDS-PAGE and immunoblotting. Ethoxysilatrane, a hypocholesterolemic compound, which decreased the liver-microsomal activity of HMGCoA reductase on intra-peritonial treatment of animals, showed little effect on the enzyme activity with isolated microsomes or the 50kDa-soluble enzyme when added in the assay. But it was able to inhibit the activity of the soluble 58kDa-enzyme in a concentration-dependent, reversible manner. Cholesterol and an oxycholesterol were without effect whereas chlorophenoxyisobutyrate and ubiquinone showed small inhibition under these conditions. The extra region that links the active site domain (50kDa protein) to the membrane, present in the 58kDa-protein appears to be involved in mediating the inhibition by silatrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Being vastly different from the human counterpart, we suggest that the last enzyme of the Mycobacterium tuberculosis Coenzyme A biosynthetic pathway, dephosphocoenzyme A kinase (CoaE) could be a good anti-tubercular target. Here we describe detailed investigations into the regulatory features of the enzyme, affected via two mechanisms. Enzymatic activity is regulated by CTP which strongly binds the enzyme at a site overlapping that of the leading substrate, dephosphocoenzyme A (DCoA), thereby obscuring the binding site and limiting catalysis. The organism has evolved a second layer of regulation by employing a dynamic equilibrium between the trimeric and monomeric forms of CoaE as a means of regulating the effective concentration of active enzyme. We show that the monomer is the active form of the enzyme and the interplay between the regulator, CTP and the substrate, DCoA, affects enzymatic activity. Detailed kinetic data have been corroborated by size exclusion chromatography, dynamic light scattering, glutaraldehyde crosslinking, limited proteolysis and fluorescence investigations on the enzyme all of which corroborate the effects of the ligands on the enzyme oligomeric status and activity. Cysteine mutagenesis and the effects of reducing agents on mycobacterial CoaE oligomerization further validate that the latter is not cysteine-mediated or reduction-sensitive. These studies thus shed light on the novel regulatory features employed to regulate metabolite flow through the last step of a critical biosynthetic pathway by keeping the latter catalytically dormant till the need arises, the transition to the active form affected by a delicate crosstalk between an essential cellular metabolite (CTP) and the precursor to the pathway end-product (DCoA).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quest for new drug targets in Plasmodium sp. has underscored malonyl CoA:ACP transacylase (PfFabD) of fatty acid biosynthetic pathway in apicoplast. In this study, a piggyback approach was employed for the receptor deorphanization using inhibitors of bacterial FabD enzymes. Due to the lack of crystal structure, theoretical model was constructed using the structural details of homologous enzymes. Sequence and structure analysis has localized the presence of two conserved pentapeptide motifs: GQGXG and GXSXG and five key invariant residues viz., Gln109, Ser193, Arg218, His305 and Gln354 characteristic of FabD enzyme. Active site mapping of PfFabD using substrate molecules has disclosed the spatial arrangement of key residues in the cavity. As structurally similar molecules exhibit similar biological activities, signature pharmacophore fingerprints of FabD antagonists were generated using 0D-3D descriptors for molecular similarity-based cluster analysis and to correlate with their binding profiles. It was observed that antagonists showing good geometrical fitness score were grouped in cluster-1, whereas those exhibiting high binding affinities in cluster-2. This study proves important to shed light on the active site environment to reveal the hotspot for binding with higher affinity and to narrow down the virtual screening process by searching for close neighbors of the active compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statins are known to modulate cell surface cholesterol (CSC) and AMP-activated protein kinase (AMPK) in nonneural cells; however no study demonstrates whether CSC and AMPK may regulate simvastatin induced neuritogenesis (SIN). We found that simvastatin (SIM) maintains CSC as shown by Fillipin III staining, Flotillin-2 protein expression / localization and phosphorylation of various receptor tyrosine kinases (RTKs) in the plasma membrane. Modulation of CSC revealed that SIN is critically dependent on this CSC. Simultaneously, phospho array for mitogen activated protein kinases (MAPKs) revealed PI3K / Akt as intracellular pathway which modulates lipid pathway by inhibiting AMPK activation. Though, SIM led to a transient increase in AMPK phosphorylation followed by a sudden decline; the effect was independent of PI3K. Strikingly, AMPK phosphorylation was regulated by protein phosphatase 2A (PP2A) activity which was enhanced upon SIM treatment as evidenced by increase in threonine phosphorylation. Moreover, it was observed that addition of AMP analogue and PP2A inhibitor inhibited SIN. Biocomposition of neurites shows that lipids form a major part of neurites and AMPK is known to regulate lipid metabolism majorly through acetyl CoA carboxylase (ACC). AMPK activity is negative regulator of ACC activity and we found that phosphorylation of ACC started to decrease after 6 hrs which becomes more pronounced at 12 hrs. Addition of ACC inhibitor showed that SIN is dependent on ACC activity. Simultaneously, addition of Fatty acid synthase (FAS) inhibitor confirmed that endogenous lipid pathway is important for SIN. We further investigated SREBP-1 pathway activation which controls ACC and FAS at transcriptional level. However, SIM did not affect SREBP-1 processing and transcription of its target genes likes ACC1 and FAS. In conclusion, this study highlights a distinct role of CSC and ACC in SIN which might have implication in process of neuronal differentiation induced by other agents.