147 resultados para Mesoporous Tio2


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A hexagonal mesoporous phase based on SnO2 is synthesized for the first time by using an anionic surfactant; hexagonal phases of TiO2 are prepared with neutral amine surfactants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Composite of anatase titania (TiO2) nanospheres and carbon grown and self-assembled into micron-sized mesoporous spheres via a solvothermal synthesis route are discussed here in the context of rechargeable lithium-ion battery. The morphology and carbon content and hence the electrochemical performance are observed to be significantly influenced by the synthesis parameters. Synthesis conditions resulting in a mesoporous arrangement of an optimized amount carbon and TiO2 exhibited the best lithium battery performance. The first discharge cycle capacity of carbon-titania mesoporous spheres (solvothermal reaction at 150 degrees C at 6 h, calcination at 500 degrees C under air, BET surface area 80 m(2)g(-1)) was 334 mAhg(-1) (approximately 1 Li) at current rate of 0.066 Ag-1. High storage capacity and good cyclability is attributed to the nanostructuring of TiO2 (mesoporosity) as well as due to formation of a percolation network of carbon around the TiO2 nanoparticles. The micron-sized mesoporous spheres of carbon-titania composite nanoparticles also show good rate cyclability in the range (0.066-6.67) Ag-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chain length of the surfactant and the solvent composition are two of the factors that determine whether the lamellar or the hexagonal form of mesoporous SiO2 (or ZrO2) is formed by the neutral amine route; a lamellar-hexagonal transformation occurs on removal of the amine from the former.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An inexpensive and effective simple method for the preparation of nano-crystalline titanium oxide (anatase) thin films at room temperature on different transparent substrates is presented. This method is based on the use of peroxo-titanium complex, i.e. titanium isopropoxide as a single initiating organic precursor. Post-annealing treatment is necessary to convert the deposited amorphous film into titanium oxide (TiO2) crystalline (anatase) phase. These films have been characterized for X-ray diffraction (XRD) studies, atomic force microscopic (AFM) studies and optical measurements. The optical constants such as refractive index and extinction coefficient have been estimated by using envelope technique. Also, the energy gap values have been estimated using Tauc's formula for on glass and quartz substrates are found to be 3.35 eV and 3.39 eV, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TiO2 films are extensively used in various applications including optical multi-layers, sensors, photo catalysis, environmental purification, and solar cells etc. These are prepared by both vacuum and non-vacuum methods. In this paper, we present the results on TiO2 thin films prepared by a sol-gel spin coating process in non-aqueous solvent. Titanium isopropoxide is used as TiO2 precursor. The films were annealed at different temperatures up to 3000 C for 5 hours in air. The influence of the various deposition parameters like spinning speed, spinning time and annealing temperature on the thickness of the TiO2 films has been studied. The variation of film thickness with time in ambient atmosphere was also studied. The optical, structural and morphological characteristics were investigated by optical transmittance-reflectance measurements, X-ray diffraction (XRD) and scanning electron microscopy (SEM) respectively. The refractive index and extinction coefficient of the films were determined by envelope technique and spectroscopic ellipsometry. TiO2 films exhibited high transparency (92%) in the visible region with a refractive index of 2.04 at 650 nm. The extinction coefficient was found to be negligibly small. The X-ray diffraction analysis showed that the TiO2 film deposited on glass substrate changes from amorphous to crystalline (anatase) phase with annealing temperature above 2500 C. SEM results show that the deposited films are uniform and crack free.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An inexpensive and effective simple method for the preparation of nano-crystalline titanium oxide (anatase) thin films at room temperature on different transparent substrates is presented. This method is based on the use of peroxo-titanium complex, i.e. titanium isopropoxide as a single initiating organic precursor. Post-annealing treatment is necessary to convert the deposited amorphous film into titanium oxide (TiO2) crystalline (anatase) phase. These films have been characterized for X-ray diffraction (XRD) studies, atomic force microscopic (AFM) studies and optical measurements. The optical constants such as refractive index and extinction coefficient have been estimated by using envelope technique. Also, the energy gap values have been estimated using Tauc's formula for on glass and quartz substrates are found to be 3.35 eV and 3.39 eV, respectively. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthesis of mesoporous zirconium phosphate (MZP) by co-assembly of a tri-block copolymer, namely pluronic-F127, as a structure-directing agent, and a mixture of zirconium butoxide and phosphorous trichloride as inorganic precursors is reported. MZP with a specific surface area of 84 m(2) g(-1) average pore diameter of about 17 nm and pore volume of 0.35 cm(3) g(-1) has been prepared, and characterised by X-ray diffraction (XRD) and transmission electron microscopy. Nafion-MZP composite membrane is obtained by employing MZP as a surface-functionalised solid-super-acid-proton-conducting medium as well as all inorganic filler with high affinity to absorb water and fast proton-transport across the electrolyte membrane even under low relative humidity (RH) conditions. The composite membranes have been evaluated in H-2/O-2 polymer electrolyte fuel cells (PEFCs) at varying RH values between 18 and 100%; a peak power density of 355 mW cm(-2) at a load current density of 1,100 mA cm(-2) is achieved with the PEFC employing Nafion-MZP composite membrane while operating at optimum temperature (70 degrees C) under 18% RH and ambient pressure. On operating the PEFC employing Nafion-MZP membrane electrolyte with hydrogen and air feeds at ambient pressure and a RH value of 18%, a peak power density of 285 mW cm(-2) at the optimum temperature (60 degrees C) is achieved. In contrast, operating under identical conditions, a peak power density of only similar to 170 mW cm(-2) is achieved with the PEFC employing Nafion-1135 membrane electrolyte.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calciothermic reduction of TiO2 provides a potentially low-cost route to titanium production. Presented in this article is a suitably designed diagram, useful for assessing the degree of reduction of TiO2 and residual oxygen contamination in metal as a function of reduction temperature and other process parameters. The oxygen chemical potential diagram à la Ellingham-Richardson-Jeffes is useful for visualization of the thermodynamics of reduction reactions at high temperatures. Although traditionally the diagram depicts oxygen potentials corresponding to the oxidation of different metals to their corresponding oxides or of lower oxides to higher oxides, oxygen potentials associated with solution phases at constant composition can be readily superimposed. The usefulness of the diagram for an insightful analysis of calciothermic reduction, either direct or through an electrochemical process, is discussed. Identified are possible process variations, modeling and optimization strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyaniline (PANI)/para-toluene sulfonic acid (pTSA) and PANI/pTSA-TiO2 composites were prepared using chemical method and characterized by infrared spectroscopy (IR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM). The electrical conductivity and magnetic properties were also measured. In corroboration with XRD, the micrographs of SEM indicated the homogeneous dispersion of TiO nanoparticles in bulk PANI/pTSA matrix. Conductivity of the PANI/pTSA-TiO2 was higher than the PAN[/pTSA, and the maximum conductivity obtained was 9.48 (S/cm) at 5 wt% of TiO2. Using SQUID magnetometer, it was found that PANI/pTSA was either paramagnetic or weakly ferromagnetic from 300 K down to 5 K with H-C approximate to 30 Oe and M-r approximate to 0.015 emu/g. On the other hand,PANI/pTSA-TiO2 was diamagnetic from 300 K down to about 50 K and below which it was weakly ferromagnetic. Furthermore, a nearly temperature-independent magnetization was observed in both the cases down to 50 K and below which the magnetization increased rapidly (a Curie like susceptibility was observed). The Pauli susceptibility (chi(pauli)) was calculated to be about 4.8 X 10(-5) and 1.6 x 10(-5)emug(-1) Oe(-1) K for PANI/pTSA and PANI/pTSA-TiO2, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of an EPR investigation are presented on the paramagnetic trap-centres produced on hydrothermally prepared TiO2 particles during water photolysis at room temperature under band-gap irradiation. The trapped holes correspond to O− species adjacent to cation vacancies that are formed to compensate the hydroxyl ions in the subsurface layers. The trapped electrons are accounted for as Ti3+ in the conduction band or Ti3+ - adjoining oxygen vacancy to form shallow donor states. Although hole-centres are normally stabler than electron-centres, strongly adsorbed donor molecules reverse the stability. Concentration of hole-centres is increased by the presence of platinum on TiO2 surface and electron-centres are not detected on Pt/TiO2 during water photolysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The often discussed role of surface hydroxylation of TiO2 particles as an essential characterestics for their photocatalytic activity can be verified by preparing TiO2 powders by hydrothermal method since hydroxylated surface layers will be better retained on these particles formed in superheated water. Thus, fine powders of TiO2 (rutile) with high degree of crystallinity are formed from titanium oxychloride in the mixed solvent of water and 2-propanol at 160–230°C and 20–120 atm. The anatase phase is produced from the same medium when sulfate ion impurity is present, with Image . TiO2 powders are washed free of anions and 2-propanol by ultrafiltration and are Pt mounted by a photochemical method. Aqueous suspensions of both forms of TiO2 neither as such nor after Pt-loading, do not produce H2 on band gap illumination whereas, H2 is generated in presence of hole scavengers such as EDTA, TEOA, sulfite or hypophosphite. The effects of hole scavenger concentration, Pt : TiO2 ratio, particulate suspension density and the nature of hole scavengers on H2 production are presented. Platinised rutile powders are equally active as anatase in sacrificial systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ag-substituted (Ag sub) and Ag-impregnated (Ag imp), anatase phase nano-TiO2 have been synthesized by solution combustion technique and reduction technique, respectively. The catalysts were characterized extensively by powder XRD, TEM, XPS, FT-Raman, UV absorption, FT-IR, TGA, photoluminescence, BET surface area and isoelectric pH measurements. These catalysts were used for the photodegradation of dyes and for the selective photooxidation of cyclohexane to cyclohexanone. The photoactivities of the combustion-synthesized catalysts were compared with those of commercial Degussa P 25 (DP 25) TiO2, and Ag-impregnated DP 25 (Ag DP). For the photocatalytic degradation of dyes, unsubstituted combustion-synthesized TiO2 (CS TiO2) exhibited the highest activity, followed by 1% Ag imp and 1% Ag sub. For the photoconversion of cyclohexane, the total conversion of cyclohexane and the selectivity of cyclohexanone followed the order: 1% Ag sub > DP 25 > CS TiO2 > 1% Ag imp > 1% Ag DP. The kinetics of the photodegradation of dyes and of the photooxidation of cyclohexane were modeled using Langmuir–Hinshelwood rate equation and a free radical mechanism, respectively, and the rate coefficients were determined. The difference in activity values of the catalysts observed for these two reactions and the detailed characterization of these catalysts are described in this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon-supported Pt-TiO2 (Pt-TiO2/C) catalysts with varying at. wt ratios of Pt to Ti, namely, 1:1, 2:1, and 3:1, are prepared by the sol-gel method. The electrocatalytic activity of the catalysts toward oxygen reduction reaction (ORR), both in the presence and absence of methanol, is evaluated for application in direct methanol fuel cells (DMFCs). The optimum at. wt ratio of Pt to Ti in Pt-TiO2/C is established by fuel cell polarization, linear sweep voltammetry, and cyclic voltammetry studies. Pt-TiO2/C heattreated at 750 degrees C with Pt and Ti in an at. wt ratio of 2:1 shows enhanced methanol tolerance, while maintaining high catalytic activity toward ORR. The DMFC with a Pt-TiO2/C cathode catalyst exhibits an enhanced peak power density of 180 mW/cm(2) in contrast to the 80 mW/cm(2) achieved from the DMFC with carbon-supported Pt catalyst while operating under identical conditions. Complementary data on the influence of TiO2 on the crystallinity of Pt, surface morphology, and particle size, surface oxidation states of individual constituents, and bulk and surface compositions are also obtained by powder X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive analysis by X-ray, and inductively coupled plasm optical emission spectrometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomic layer deposition was used to obtain TiO2 thin films on Si (100) and fused quartz, using a novel metal organic precursor. The films were grown at 400 degrees C, varying the amount of oxygen used as the reactive gas. X-ray diffraction showed the films to be crystalline, with a mixture of anatase and rutile phases. To investigate their optical properties, ellipsometric measurements were made in the UV-Vis-NIR range (300-1700 nm). Spectral distribution of various optical constants like refractive index (n), absorption index (k), transmittance (T), reflectance (R), absorption (A) were calculated by employing Bruggemann's effective medium approximation (BEMA) and Maxwell-Garnet effective medium approximation, in conjunction with the Cauchy and Forouhi-Bloomer (FB) dispersion relations. A layered optical model has been proposed which gives the thickness, elemental and molecular composition, amorphicity and roughness (morphology) of the TiO2 film surface and and the film/substrate interface, as a function of oxygen flow rate The spectral distribution of the optical band gap (E-g(opt)), complex dielectric constants (epsilon' and epsilon''), and optical conductivity (sigma(opt)), has also been determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline TiO2 films have been synthesized on glass and silicon substrates by sol-gel technique. The films have been characterized with optical reflectance/transmittance in the wavelength range 300-1000nm and the optical constants (n, k) were estimated by using envelope technique as well as spectroscopic ellipsometry. Morphological studies have been carried Out using atomic force microscope (AFM). Metal-Oxide-Silicon (MOS) capacitor was fabricated using conducting coating on TiO2 film deposited on silicon. The C-V measurements show that the film annealed at 300 degrees C has a dielectric constant of 19.80. The high percentage of transmittance, low surface roughness and high dielectric constant suggests that it can be used as an efficient anti-reflection coating on silicon and other optical coating applications and also as a MOS capacitor.