26 resultados para Medical statistics.
Resumo:
This paper describes the design and implementation of ADAMIS (‘A database for medical information systems’). ADAMIS is a relational database management system for a general hospital environment. Apart from the usual database (DB) facilities of data definition and data manipulation, ADAMIS supports a query language called the ‘simplified medical query language’ (SMQL) which is completely end-user oriented and highly non-procedural. Other features of ADAMIS include provision of facilities for statistics collection and report generation. ADAMIS also provides adequate security and integrity features and has been designed mainly for use on interactive terminals.
Resumo:
The statistical minimum risk pattern recognition problem, when the classification costs are random variables of unknown statistics, is considered. Using medical diagnosis as a possible application, the problem of learning the optimal decision scheme is studied for a two-class twoaction case, as a first step. This reduces to the problem of learning the optimum threshold (for taking appropriate action) on the a posteriori probability of one class. A recursive procedure for updating an estimate of the threshold is proposed. The estimation procedure does not require the knowledge of actual class labels of the sample patterns in the design set. The adaptive scheme of using the present threshold estimate for taking action on the next sample is shown to converge, in probability, to the optimum. The results of a computer simulation study of three learning schemes demonstrate the theoretically predictable salient features of the adaptive scheme.
Resumo:
The simultaneous state and parameter estimation problem for a linear discrete-time system with unknown noise statistics is treated as a large-scale optimization problem. The a posterioriprobability density function is maximized directly with respect to the states and parameters subject to the constraint of the system dynamics. The resulting optimization problem is too large for any of the standard non-linear programming techniques and hence an hierarchical optimization approach is proposed. It turns out that the states can be computed at the first levelfor given noise and system parameters. These, in turn, are to be modified at the second level.The states are to be computed from a large system of linear equations and two solution methods are considered for solving these equations, limiting the horizon to a suitable length. The resulting algorithm is a filter-smoother, suitable for off-line as well as on-line state estimation for given noise and system parameters. The second level problem is split up into two, one for modifying the noise statistics and the other for modifying the system parameters. An adaptive relaxation technique is proposed for modifying the noise statistics and a modified Gauss-Newton technique is used to adjust the system parameters.
Resumo:
A very general and numerically quite robust algorithm has been proposed by Sastry and Gauvrit (1980) for system identification. The present paper takes it up and examines its performance on a real test example. The example considered is the lateral dynamics of an aircraft. This is used as a vehicle for demonstrating the performance of various aspects of the algorithm in several possible modes.
Resumo:
We propose a self-regularized pseudo-time marching strategy for ill-posed, nonlinear inverse problems involving recovery of system parameters given partial and noisy measurements of system response. While various regularized Newton methods are popularly employed to solve these problems, resulting solutions are known to sensitively depend upon the noise intensity in the data and on regularization parameters, an optimal choice for which remains a tricky issue. Through limited numerical experiments on a couple of parameter re-construction problems, one involving the identification of a truss bridge and the other related to imaging soft-tissue organs for early detection of cancer, we demonstrate the superior features of the pseudo-time marching schemes.
Resumo:
A method is developed by which the input leading to the highest possible response in an interval of time can be determined for a class of non-linear systems. The input, if deterministic, is constrained to have a known finite energy (or norm) in the interval under consideration. In the case of random inputs, the energy is constrained to have a known probability distribution function. The approach has applications when a system has to be put to maximum advantage by getting the largest possible output or when a system has to be designed to the highest maximum response with only the input energy or the energy distribution known. The method is also useful in arriving at a bound on the highest peak distribution of the response, when the excitation is a known random process.As an illustration the Duffing oscillator has been analysed and some numerical results have also been presented.
Resumo:
In the recent time CFD tools have become increasingly useful in the engineering design studies especially in the area of aerospace vehicles. This is largely due to the advent of high speed computing platforms in addition to the development of new efficient algorithms. The algorithms based on kinetic schemes have been shown to be very robust and further meshless methods offer certain advantages over the other methods. Preliminary investigations of blood flow visualization through artery using CFD tool have shown encouraging results which further needs to be verified and validated.
Resumo:
Active particles contain internal degrees of freedom with the ability to take in and dissipate energy and, in the process, execute systematic movement. Examples include all living organisms and their motile constituents such as molecular motors. This article reviews recent progress in applying the principles of nonequilibrium statistical mechanics and hydrodynamics to form a systematic theory of the behavior of collections of active particles-active matter-with only minimal regard to microscopic details. A unified view of the many kinds of active matter is presented, encompassing not only living systems but inanimate analogs. Theory and experiment are discussed side by side.
Resumo:
The recently evaluated two-pion contribution to the muon g - 2 and the phase of the pion electromagnetic form factor in the elastic region, known from pi pi scattering by Fermi-Watson theorem, are exploited by analytic techniques for finding correlations between the coefficients of the Taylor expansion at t = 0 and the values of the form factor at several points in the spacelike region. We do not use specific parametrizations, and the results are fully independent of the unknown phase in the inelastic region. Using for instance, from recent determinations, < r(pi)(2)> = (0.435 +/- 0.005) fm(2) and F(-1.6 GeV2) = 0.243(-0.014)(+0.022), we obtain the allowed ranges 3.75 GeV-4 less than or similar to c less than or similar to 3.98 GeV-4 and 9.91 GeV-6 less than or similar to d less than or similar to 10.46 GeV-6 for the curvature and the next Taylor coefficient, with a strong correlation between them. We also predict a large region in the complex plane where the form factor cannot have zeros.
Resumo:
We use the Thomas-Fermi method to examine the thermodynamics of particles obeying Haldane exclusion statistics. Specifically, we study Calogero-Sutherland particles placed in a given external potential in one dimension. For the case of a simple harmonic potential (constant density of states), we obtain the exact one-particle spatial density and a {\it closed} form for the equation of state at finite temperature, which are both new results. We then solve the problem of particles in a $x^{2/3} ~$ potential (linear density of states) and show that Bose-Einstein condensation does not occur for any statistics other than bosons.
Resumo:
Direction Of Arrival (DOA) estimation, using a sensor array, in the presence of non-Gaussian noise using Fractional Lower-Order Moments (FLOM)matrices is studied. In this paper, a new FLOM based technique using the Fractional Lower Order Infinity Norm based Covariance (FLIC) Matrix is proposed. The bounded property and the low-rank subspace structure of the FLIC matrix is derived. Performance of FLIC based DOA estimation using MUSIC, ESPRIT, is shown to be better than other FLOM based methods.
Resumo:
Empirical research available on technology transfer initiatives is either North American or European. Literature over the last two decades shows various research objectives such as identifying the variables to be measured and statistical methods to be used in the context of studying university based technology transfer initiatives. AUTM survey data from years 1996 to 2008 provides insightful patterns about the North American technology transfer initiatives, we use this data in our paper. This paper has three sections namely, a comparison of North American Universities with (n=1129) and without Medical Schools (n=786), an analysis of the top 75th percentile of these samples and a DEA analysis of these samples. We use 20 variables. Researchers have attempted to classify university based technology transfer initiative variables into multi-stages, namely, disclosures, patents and license agreements. Using the same approach, however with minor variations, three stages are defined in this paper. The first stage is to do with inputs from R&D expenditure and outputs namely, invention disclosures. The second stage is to do with invention disclosures being the input and patents issued being the output. The third stage is to do with patents issued as an input and technology transfers as outcomes.
Resumo:
A substantial number of medical students in India have to bear an enormous financial burden for earning a bachelor's degree in medicine referred to as MBBS (bachelor of medicine and bachelor of surgery). This degree program lasts for four and one-half years followed by one year of internship. A postgraduate degree, such as MD, has to be pursued separately on completion of a MBBS. Every medical college in India is part of a hospital where the medical students get clinical exposure during the course of their study. All or at least a number of medical colleges in a given state are affiliated to a university that mainly plays a role of an overseeing authority. The medical colleges usually have no official interaction with other disciplines of education such as science and engineering, perhaps because of their independent location and absence of emphasis on medical research. However, many of the medical colleges are adept in imparting high-quality and sound training in medical practices including diagnostics and treatment. The medical colleges in India are generally of two types, i.e., government owned and private. Since only a limited number of seats are available across India in the former category of colleges, only a small fraction of aspiring candidates can find admission in these colleges after performing competitively in the relevant entrance tests. A major advantage of studying in these colleges is the nominal tuition fees that have to be paid. On the other hand, a large majority of would-be medical graduates have to seek admission in the privately run medical institutes in which the tuition and other related fees can be mind boggling when compared to their public counterparts. Except for candidates of exceptionally affluent background, the only alternative for fulfilling the dream of becoming a doctor is by financing one's study through hefty bank loans that may take years to pay back. It is often heard from patients that they are asked by doctors to undergo a plethora of diagnostic tests for apparently minor illnesses, which may financially benefit those prescribing the tests. The present paper attempts to throw light on the extent of disparity in cost of a medical education between state-funded and privately managed medical colleges in India; the average salary of a new medical graduate, which is often ridiculously low when compared to what is offered in entry-level engineering and business jobs; and the possible repercussions of this apparently unjust economic situation regarding the exploitation of patients.