32 resultados para Market forces
Resumo:
We address risk minimizing option pricing in a semi-Markov modulated market where the floating interest rate depends on a finite state semi-Markov process. The growth rate and the volatility of the stock also depend on the semi-Markov process. Using the Föllmer–Schweizer decomposition we find the locally risk minimizing price for European options and the corresponding hedging strategy. We develop suitable numerical methods for computing option prices.
Resumo:
We address a portfolio optimization problem in a semi-Markov modulated market. We study both the terminal expected utility optimization on finite time horizon and the risk-sensitive portfolio optimization on finite and infinite time horizon. We obtain optimal portfolios in relevant cases. A numerical procedure is also developed to compute the optimal expected terminal utility for finite horizon problem.
Resumo:
A strain gauge load cell with separate bridges for measurement of the pull and the bending moment in the plane containing the net neck load and pull was developed and fixed in the longitudinal member of an experimental cart. A cart fitted first with pneumatic wheels and then with steel-rimmed wooden wheels was tested on three terrains—tar road, mud road and grassy terrain. Pull vs time and moment vs time records were obtained in each test and analysed. It is found that the bullocks pull the cart rather discontinuously at the low velocities at which these carts normally operate. On the tar road and the grassy terrain, the mean static coefficient of friction is significantly higher for the cart with steelrimmed wooden wheels. The dynamic frictional resistance of the terrain for the cart with steel-rimmed wooden wheels is lower than for the cart with pneumatic wheels so long as the wheels do not dig or sink into the terrain. The fluctuation in the neck load is lower in the cart fitted with pneumatic wheels. Also, the ground-induced low-amplitude high-frequency vibratory load content in the neck load is lower in the cart with pneumatic wheels.
Resumo:
A mechanics based linear analysis of the problem of dynamic instabilities in slender space launch vehicles is undertaken. The flexible body dynamics of the moving vehicle is studied in an inertial frame of reference, including velocity induced curvature effects, which have not been considered so far in the published literature. Coupling among the rigid-body modes, the longitudinal vibrational modes and the transverse vibrational modes due to asymmetric lifting-body cross-section are considered. The model also incorporates the effects of aerodynamic forces and the propulsive thrust of the vehicle. The effects of the coupling between the combustion process (mass variation, developed thrust etc.) and the variables involved in the flexible body dynamics (displacements and velocities) are clearly brought out. The model is one-dimensional, and it can be employed to idealised slender vehicles with complex shapes. Computer simulations are carried out using a standard eigenvalue problem within h-p finite element modelling framework. Stability regimes for a vehicle subjected to propulsive thrust are validated by comparing the results from published literature. Numerical simulations are carried out for a representative vehicle to determine the instability regimes with vehicle speed and propulsive thrust as the parameters. The phenomena of static instability (divergence) and dynamic instability (flutter) are observed. The results at low Mach number match closely with the results obtained from previous models published in the literature.
Resumo:
This paper reports the basic design of a new six component force balance system using miniature piezoelectric accelerometers to measure all aerodynamic forces and moments for a test model in hypersonic shock tunnel (HST2). Since the flow duration in a hypersonic shock tunnel is of the order of $1$ ms, the balance system [1] uses fast response accelerometers (PCB Piezotronics; frequency range of 1-10 kHz) for obtaining the aerodynamic data. The alance system has been used to measure the basic aerodynamic forces and moments on a missile shaped body at Mach $8$ in the IISc hypersonic shock tunnel. The experimentally measured values match well with theoretical predictions.
Resumo:
The potential energy curve of the He2+2 system dissociating into two He+ ions is examined in terms of the electronic force exerted on each nucleus as a function of the internuclear separation. The results are compared with the process of bond-formation in H2 from the separated atoms.
Resumo:
The environmcnl exerts an important inJuence on the pefirmance of space systems. A brief rel'iew of mo.s/ of the studies, pre.~ented over the past eightem years, relating to the influence ar7d the possible utilization of thc solar radiation pressure &d aero&namic forces, with particular reference to attitude dynamics and control qf satellites is presented here. The semi-passive stabilizers employing rhese forces show p~qmise of long life, low power and economic sjsfems, which though slower in response, compare we1I wit11 the octiw coi~trollers. It is felt that mud more attention is necessary to the actual implema~tution of these ideas and devices: some of which me quite ingenious und unique.
Resumo:
We offer a procedure for evaluating the forces exerted by solitons of weak-coupling field theories on one another. We illustrate the procedure for the kink and the antikink of the two-dimensional φ4 theory. To do this, we construct analytically a static solution of the theory which can be interpreted as a kink and an antikink held a distance R apart. This leads to a definition of the potential energy U(R) for the pair, which is seen to have all the expected features. A corresponding evaluation is also done for U(R) between a soliton and an antisoliton of the sine-Gordon theory. When this U(R) is inserted into a nonrelativistic two-body problem for the pair, it yields a set of bound states and phase shifts. These are found to agree with exact results known for the sine-Gordon field theory in those regions where U(R) is expected to be significant, i.e., when R is large compared to the soliton size. We take this agreement as support that our procedure for defining U(R) yields the correct description of the dynamics of well-separated soliton pairs. An important feature of U(R) is that it seems to give strong intersoliton forces when the coupling constant is small, as distinct from the forces between the ordinary quanta of the theory. We suggest that this is a general feature of a class of theories, and emphasize the possible relevance of this feature to real strongly interacting hadrons.
Resumo:
We address asymptotic analysis of option pricing in a regime switching market where the risk free interest rate, growth rate and the volatility of the stocks depend on a finite state Markov chain. We study two variations of the chain namely, when the chain is moving very fast compared to the underlying asset price and when it is moving very slow. Using quadratic hedging and asymptotic expansion, we derive corrections on the locally risk minimizing option price.
Resumo:
The ultrafast vibrational phase relaxation of O–H stretch in bulk water is investigated in molecular dynamics simulations. The dephasing time (T2) of the O–H stretch in bulk water calculated from the frequency fluctuation time correlation function (Cω(t)) is in the range of 70–80 femtosecond (fs), which is comparable to the characteristic timescale obtained from the vibrational echo peak shift measurements using infrared photon echo [W.P. de Boeij, M.S. Pshenichnikov, D.A. Wiersma, Ann. Rev. Phys. Chem. 49 (1998) 99]. The ultrafast decay of Cω(t) is found to be responsible for the ultrashort T2 in bulk water. Careful analysis reveals the following two interesting reasons for the ultrafast decay of Cω(t). (A) The large amplitude angular jumps of water molecules (within 30–40 fs time duration) provide a large scale contribution to the mean square vibrational frequency fluctuation and gives rise to the rapid spectral diffusion on 100 fs time scale. (B) The projected force, due to all the atoms of the solvent molecules on the oxygen (FO(t)) and hydrogen (FH(t)) atom of the O–H bond exhibit a large negative cross-correlation (NCC). We further find that this NCC is partly responsible for a weak, non-Arrhenius temperature dependence of the dephasing rate.
Resumo:
We report new radio continuum and 21 cm HI observations using the Giant Metrewave Radio Telescope (GMRT) of the group Holmberg 124 ( Ho 124) comprising four late-type galaxies, namely NGC 2820, Mrk 108, NGC 2814 and NGC 2805. The three galaxies, NGC 2820, Mrk 108 and NGC 2814 which are closely located in the sky plane have clearly undergone tidal interactions as seen from the various morphological tidal signatures and debris. Moreover we note various features in the group members which we believe might be due to ram pressure. In this paper, we describe four interesting results emerging from our observations: a) detection of the tidal radio continuum bridge at 330 MHz connecting the galaxies NGC 2820+ Mrk 108 with NGC 2814. The radio bridge was discovered at 1465 MHz by van der Hulst & Hummel ( 1985, A& A, 150, 17). We find that the bridge has a fairly steep spectrum with a spectral index alpha(S proportional to nu(alpha)) of - 1.8(-0.2)(+0.3) which is much steeper than the - 0.8 quoted by van der Hulst & Hummel ( 1985); b) detection of other tidal features like the tilted HI and radio continuum disk of NGC 2814, a HI streamer and a radio continuum tail arising from the south of NGC 2814. We also report the detection of a possible tidal dwarf galaxy in HI; c) sharp truncation in the HI distribution in the south of NGC 2820 and in the HI and radio continuum distribution in the north of NGC 2814. The optical disks in both the cases look undisturbed. As pointed out by Davis et al. ( 1997, AJ, 114, 613), ram pressure affects different components of the interstellar medium to varying degrees. Simple estimates of pressure in different components of the interstellar medium ( radio continuum, Ha and HI) in NGC 2820 indicate that ram pressure will significantly influence HI; d) detection of a large one-sided HI loop to the north of NGC 2820. No radio continuum emission or Ha emission is associated with the HI loop. We discuss various scenarios for the origin of this loop including a central starburst, ram pressure stripping and tidal interaction. We do not support the central starburst scenario since the loop is not detected in ionized gas. Using the upper limit on X-ray luminosity of Ho 124 (Mulchaey et al. 2003, ApJS, 145, 39), we estimate an upper limit on the intragroup medium (IGrM) density of 8.8 x 10(-4) cm(-3). For half this electron density, we estimate the ram pressure force of the IGrM to be comparable to the gravitational pull of the disk of NGC 2820. Since tidal interaction has obviously influenced the group, we suggest that the loop could have formed by ram pressure stripping if tidal effects had reduced the surface density of HI in NGC 2820. From the complex observational picture of Ho 124 and the numerical estimates, we suggest that the evolution of the Ho 124 group may be governed by both tidal forces due to the interaction and the ram pressure due to motion of the member galaxies in the IGrM and that the IGrM densities should not be too low (i.e. >= 4 x 10(-4)). However this needs to be verified by further observations.
Resumo:
With an objective to understand the nature of forces which contribute to the disjoining pressure of a thin water film on a steel substrate being pressed by an oil droplet, two independent sets of experiments were done. (i) A spherical silica probe approaches the three substrates; mica, PTFE and steel, in a 10 mM electrolyte solution at two different pHs (3 and 10). (ii) The silica probe with and without a smeared oil film approaches the same three substrates in water (pH = 6). The surface potential of the oil film/water was measured using a dynamic light scattering experiment. Assuming the capacity of a substrate for ion exchange the total interaction force for each experiment was estimated to include the Derjaguin-Landau-Verwey-Overbeek (DLVO) force, hydration repulsion, hydrophobic attraction and oil-capillary attraction. The best fit of these estimates to the force-displacement characteristics obtained from the two sets of experiment gives the appropriate surface potentials of the substrates. The procedure allows an assessment of the relevance of a specific physical interaction to an experimental configuration. Two of the principal observations of this work are: (i) The presence of a surface at constant charge, as in the presence of an oil film on the probe, significantly enhances the counterion density over what is achieved when both the surfaces allow ion exchange. This raises the corresponding repulsion barrier greatly. (ii) When the substrate surface is wettable by oil, oil-capillary attraction contributes substantially to the total interaction. If it is not wettable the oil film is deformed and squeezed out. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The He+He+1 interactions have been studied, as a function of the internuclear separation R, in terms of the electronic forces acting on the nuclei and the change in the charge distribution. The analysis reveals that at large R the atomic densities are polarized inwards, causing an attractive force on each nucleus, while at small R the difference in the nature of the interactions in the 2Σu and 2Σg systems is noted. It is seen that the He+He+1 (2Σu) interaction is less attractive than the He+1+He+1 interaction at lower values of R.
Resumo:
We address risk minimizing option pricing in a regime switching market where the floating interest rate depends on a finite state Markov process. The growth rate and the volatility of the stock also depend on the Markov process. Using the minimal martingale measure, we show that the locally risk minimizing prices for certain exotic options satisfy a system of Black-Scholes partial differential equations with appropriate boundary conditions. We find the corresponding hedging strategies and the residual risk. We develop suitable numerical methods to compute option prices.