39 resultados para Manifolds
Resumo:
We show that a closed orientable Riemannian n-manifold, n >= 5, with positive isotropic curvature and free fundamental group is homeomorphic to the connected sum of copies of Sn-1 x S-1.
Resumo:
We prove that if (M-n, g), n >= 4, is a compact, orientable, locally irreducible Riemannian manifold with nonnegative isotropic curvature,then one of the following possibilities hold: (i) M admits a metric with positive isotropic curvature. (ii) (M, g) is isometric to a locally symmetric space. (iii) (M, g) is Kahler and biholomorphic to CPn/2. (iv) (M, g) is quaternionic-Kahler. This is implied by the following result: Let (M-2n, g) be a compact, locally irreducible Kahler manifold with nonnegative isotropic curvature. Then either M is biholomorphic to CPn or isometric to a compact Hermitian symmetric space. This answers a question of Micallef and Wang in the affirmative. The proof is based on the recent work of Brendle and Schoen on the Ricci flow.
Resumo:
We construct an invariant of certain open four-manifolds using the Heegaard Floer theory of Ozsvath and Szabo. We show that there is a manifold X homeomorphic to R-4 for which the invariant is non-trivial,showing that X is an exotic R-4. This is the first invariant that detects exotic R-4' s. (C) 2009 Published by Elsevier GmbH.
Resumo:
A simplicial complex is said to satisfy complementarity if exactly one of each complementary pair of nonempty vertex-sets constitutes a face of the complex.
Resumo:
Consider a sequence of closed, orientable surfaces of fixed genus g in a Riemannian manifold M with uniform upper bounds on the norm of mean curvature and area. We show that on passing to a subsequence, we can choose parametrisations of the surfaces by inclusion maps from a fixed surface of the same genus so that the distance functions corresponding to the pullback metrics converge to a pseudo-metric and the inclusion maps converge to a Lipschitz map. We show further that the limiting pseudo-metric has fractal dimension two. As a corollary, we obtain a purely geometric result. Namely, we show that bounds on the mean curvature, area and genus of a surface F subset of M, together with bounds on the geometry of M, give an upper bound on the diameter of F. Our proof is modelled on Gromov's compactness theorem for J-holomorphic curves.
Resumo:
Finding vertex-minimal triangulations of closed manifolds is a very difficult problem. Except for spheres and two series of manifolds, vertex-minimal triangulations are known for only few manifolds of dimension more than 2 (see the table given at the end of Section 5). In this article, we present a brief survey on the works done in last 30 years on the following:(i) Finding the minimal number of vertices required to triangulate a given pl manifold. (ii) Given positive integers n and d, construction of n-vertex triangulations of different d-dimensional pl manifolds. (iii) Classifications of all the triangulations of a given pl manifold with same number of vertices.In Section 1, we have given all the definitions which are required for the remaining part of this article. A reader can start from Section 2 and come back to Section 1 as and when required. In Section 2, we have presented a very brief history of triangulations of manifolds. In Section 3,we have presented examples of several vertex-minimal triangulations. In Section 4, we have presented some interesting results on triangulations of manifolds. In particular, we have stated the Lower Bound Theorem and the Upper Bound Theorem. In Section 5, we have stated several results on minimal triangulations without proofs. Proofs are available in the references mentioned there. We have also presented some open problems/conjectures in Sections 3 and 5.
Resumo:
We give explicit construction of vertex-transitive tight triangulations of d-manifolds for d >= 2. More explicitly, for each d >= 2, we construct two (d(2) + 5d + 5)-vertex neighborly triangulated d-manifolds whose vertex-links are stacked spheres. The only other non-trivial series of such tight triangulated manifolds currently known is the series of non-simply connected triangulated d-manifolds with 2d + 3 vertices constructed by Kuhnel. The manifolds we construct are strongly minimal. For d >= 3, they are also tight neighborly as defined by Lutz, Sulanke and Swartz. Like Kuhnel complexes, our manifolds are orientable in even dimensions and non-orientable in odd dimensions. (c) 2013 Elsevier Inc. All rights reserved.
Resumo:
We introduce k-stellated spheres and consider the class W-k(d) of triangulated d-manifolds, all of whose vertex links are k-stellated, and its subclass W-k*; (d), consisting of the (k + 1)-neighbourly members of W-k(d). We introduce the mu-vector of any simplicial complex and show that, in the case of 2-neighbourly simplicial complexes, the mu-vector dominates the vector of Betti numbers componentwise; the two vectors are equal precisely for tight simplicial complexes. We are able to estimate/compute certain alternating sums of the components of the mu-vector of any 2-neighbourly member of W-k(d) for d >= 2k. As a consequence of this theory, we prove a lower bound theorem for such triangulated manifolds, and we determine the integral homology type of members of W-k*(d) for d >= 2k + 2. As another application, we prove that, when d not equal 2k + 1, all members of W-k*(d) are tight. We also characterize the tight members of W-k*(2k + 1) in terms of their kth Betti numbers. These results more or less answer a recent question of Effenberger, and also provide a uniform and conceptual tightness proof for all except two of the known tight triangulated manifolds. We also prove a lower bound theorem for homology manifolds in which the members of W-1(d) provide the equality case. This generalizes a result (the d = 4 case) due to Walkup and Kuhnel. As a consequence, it is shown that every tight member of W-1 (d) is strongly minimal, thus providing substantial evidence in favour of a conjecture of Kuhnel and Lutz asserting that tight homology manifolds should be strongly minimal. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
We have introduced the weight of a group which has a presentation with number of relations is at most the number of generators. We have shown that the number of facets of any contracted pseudotriangulation of a connected closed 3-manifold M is at least the weight of the fundamental group of M. This lower bound is sharp for the 3-manifolds RP3, L(3, 1), L(5, 2), S-1 x S-1 x S-1, S-2 x S-1, S-2 (x) under bar S-1 and S-3/Q(8), where Q(8) is the quaternion group. Moreover, there is a unique such facet minimal pseudotriangulation in each of these seven cases. We have also constructed contracted pseudotriangulations of L(kq - 1, q) with 4(q + k - 1) facets for q >= 3, k >= 2 and L(kq + 1, q) with 4(q + k) facets for q >= 4, k >= 1. By a recent result of Swartz, our pseudotriangulations of L(kg + 1, q) are facet minimal when kg + 1 are even. In 1979, Gagliardi found presentations of the fundamental group of a manifold M in terms of a contracted pseudotriangulation of M. Our construction is the converse of this, namely, given a presentation of the fundamental group of a 3-manifold M, we construct a contracted pseudotriangulation of M. So, our construction of a contracted pseudotriangulation of a 3-manifold M is based on a presentation of the fundamental group of M and it is computer-free.
Resumo:
We prove a result on the structure of finite proper holomorphic mappings between complex manifolds that are products of hyperbolic Riemann surfaces. While an important special case of our result follows from the ideas developed by Remmert and Stein, the proof of the full result relies on the interplay of the latter ideas and a finiteness theorem for Riemann surfaces.
Resumo:
All triangulated d-manifolds satisfy the inequality ((f0-d-1)(2)) >= ((d+2)(2))beta(1) for d >= 3. A triangulated d-manifold is called tight neighborly if it attains equality in this bound. For each d >= 3, a (2d + 3)-vertex tight neighborly triangulation of the Sd-1-bundle over S-1 with beta(1) = 1 was constructed by Kuhnel in 1986. In this paper, it is shown that there does not exist a tight neighborly triangulated manifold with beta(1) = 2. In other words, there is no tight neighborly triangulation of (Sd-1 x S-1)(#2) or (Sd-1 (sic) S-1)(#2) for d >= 3. A short proof of the uniqueness of K hnel's complexes for d >= 4 under the assumption beta(1) not equal 0 is also presented.
Resumo:
Let (M, g) be a compact Ricci-fiat 4-manifold. For p is an element of M let K-max(P) (respectively K-min(p)) denote the maximum (respectively the minimum) of sectional curvatures at p. We prove that if K-max(p) <= -cK(min)(P) for all p is an element of M, for some constant c with 0 <= c < 2+root 6/4 then (M, g) is fiat. We prove a similar result for compact Ricci-flat Kahler surfaces. Let (M, g) be such a surface and for p is an element of M let H-max(p) (respectively H-min(P)) denote the maximum (respectively the minimum) of holomorphic sectional curvatures at p. If H-max(P) <= -cH(min)(P) for all p is an element of M, for some constant c with 0 <= c < 1+root 3/2, then (M, g) is flat. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Minimal crystallizations of simply connected PL 4-manifolds are very natural objects. Many of their topological features are reflected in their combinatorial structure which, in addition, is preserved under the connected sum operation. We present a minimal crystallization of the standard PL K3 surface. In combination with known results this yields minimal crystallizations of all simply connected PL 4-manifolds of ``standard'' type, that is, all connected sums of CP2, S-2 x S-2, and the K3 surface. In particular, we obtain minimal crystallizations of a pair of homeomorphic but non-PL-homeomorphic 4-manifolds. In addition, we give an elementary proof that the minimal 8-vertex crystallization of CP2 is unique and its associated pseudotriangulation is related to the 9-vertex combinatorial triangulation of CP2 by the minimum of four edge contractions.
Resumo:
A triangulation of a closed 2-manifold is tight with respect to a field of characteristic two if and only if it is neighbourly; and it is tight with respect to a field of odd characteristic if and only if it is neighbourly and orientable. No such characterization of tightness was previously known for higher dimensional manifolds. In this paper, we prove that a triangulation of a closed 3-manifold is tight with respect to a field of odd characteristic if and only if it is neighbourly, orientable and stacked. In consequence, the Kuhnel-Lutz conjecture is valid in dimension three for fields of odd characteristic. Next let F be a field of characteristic two. It is known that, in this case, any neighbourly and stacked triangulation of a closed 3-manifold is F-tight. For closed, triangulated 3-manifolds with at most 71 vertices or with first Betti number at most 188, we show that the converse is true. But the possibility of the existence of an F-tight, non-stacked triangulation on a larger number of vertices remains open. We prove the following upper bound theorem on such triangulations. If an F-tight triangulation of a closed 3-manifold has n vertices and first Betti number beta(1), then (n - 4) (617n - 3861) <= 15444 beta(1). Equality holds here if and only if all the vertex links of the triangulation are connected sums of boundary complexes of icosahedra. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The Reeb graph tracks topology changes in level sets of a scalar function and finds applications in scientific visualization and geometric modeling. This paper describes a near-optimal two-step algorithm that constructs the Reeb graph of a Morse function defined over manifolds in any dimension. The algorithm first identifies the critical points of the input manifold, and then connects these critical points in the second step to obtain the Reeb graph. A simplification mechanism based on topological persistence aids in the removal of noise and unimportant features. A radial layout scheme results in a feature-directed drawing of the Reeb graph. Experimental results demonstrate the efficiency of the Reeb graph construction in practice and its applications.