64 resultados para MODEL-FREE
Resumo:
Confined supersonic mixing layer is explored through model-free simulations. Both two- and three-dimensional spatio-temporal simulations were carried out employing higher order finite difference scheme as well as finite volume scheme based on open source software (OpenFOAM) to understand the effect of three-dimensionality on the development of mixing layer. It is observed that although the instantaneous structures exhibit three-dimensional features, the average pressure and velocities are predominantly two-dimensional. The computed wall pressures match well with experimental results fairly well, although three-dimensional simulation underpredicts the wall pressure in the downstream direction. The self-similarity of the velocity profiles is obtained within the duct length for all the simulations. Although the mixing layer thicknesses differ among different simulations, their growth rate is nearly the same. Significant differences are observed for species and temperature distribution between two- and three-dimensional calculations, and two-dimensional calculations do not match the experimental observation of smooth variations in species mass fraction profiles as reported in literature. Reynolds stress distribution for three-dimensional calculations show profiles with less peak values compared to two-dimensional calculations; while normal stress anisotropy is higher for three-dimensional case.
Resumo:
Many interesting features of the dynamics of simple liquids near the glass transition may be understood in terms of properties of the free-energy landscape obtained from numerical studies of a model free-energy functional. Main results obtained from this approach are summarized and a list of references to relevant publications is provided. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The issue of growth rate reduction of high speed mixing layer with convective Mach number is examined for similar and dissimilar gases using Reynolds averaged Navier-Stokes (RANS) methodology with k- turbulence model. It is observed that the growth rate predicted using RANS simulations closely matches with that predicted using model free simulations. Velocity profiles do not depend on the modelled value of Pr-t and Sc-t; while the temperature and species mass fraction distributions depend heavily on them. Although basic k- turbulence model could not capture the reduced growth rate for the mixing layer formed between similar gases, it predicts very well the reduced growth rate for the mixing layer for the dissimilar gases. It appears that density ratio changes caused by temperature changes for the dissimilar gases have profound effect on the growth rate reduction.
Resumo:
A mean-field description of the glass transition in the hard-sphere system is obtained by numerically locating "glassy" minima of a model free-energy functional. These minima, characterized by inhomogeneous but aperiodic density distributions, appear as the average density is increased above the value at which equilibrium crystallization takes place. Investigations of the density distribution and local bond-orientational order at these minima yield results similar to those obtained from simulations.
Resumo:
The kinetics of the oxidation of electrodeposited boron powder and the boron powder produced by the reduction process were studied using thermogravimetry (TG). The oxidation was carried out by heating boron powder in a stream of oxygen. Both isothermal and non-isothermal methods were used to study the kinetics. Model-free isoconversional method was used to derive the kinetics parameters. A two step oxidation reaction (exothermic) was observed. The oxidation reaction could not be completed due to the formation of glassy layer of boric oxide on the surface of boron powder which acts as a barrier for further diffusion of oxygen into the particle. The activation energy obtained using model-free method for electrodeposited boron is 122 +/- 7 kJ mol(-1) whereas a value of 205 +/- 9 kJ mol(-1) was obtained for boron produced by the reduction process (commercially procured boron). Mechanistic interpretation of the oxidation reaction was done using model based method. The activation energy was found to depend on the size distribution of the particles and specific surface area of the powder. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Interpenetrating polymer networks (IPNs) of trimethylol propane triacrylate (TMPTA) and 1,6-hexane diol diacrylate (HDDA) at different weight ratios were synthesized. Temperature modulated differential scanning calorimetry (TMDSC) was used to determine whether the formation resulted in a copolymer or interpenetrating polymer network (IPN). These polymers are used as binders for microstereolithography (MSL) based ceramic microfabrication. The kinetics of thermal degradation of these polymers are important to optimize the debinding process for fabricating 3D shaped ceramic objects by MSL based rapid prototyping technique. Therefore, thermal and thermo-oxidative degradation of these IPNs have been studied by dynamic and isothermal thermogravimetry (TGA). Non-isothermal model-free kinetic methods have been adopted (isoconversional differential and KAS) to calculate the apparent activation energy (E a) as a function of conversion (α) in N 2 and air. The degradation of these polymers in N 2 atmosphere occurs via two mechanisms. Chain end scission plays a dominant role at lower temperature while the kinetics is governed by random chain scission at higher temperature. Oxidative degradation shows multiple degradation steps having higher activation energy than in N 2. Isothermal degradation was also carried out to predict the reaction model which is found to be decelerating. It was shown that the degradation of PTMPTA follows a contracting sphere reaction model in N 2. However, as the HDDA content increases in the IPNs, the degradation reaction follows Avrami-Erofeev model and diffusion governed mechanisms. The intermediate IPN compositions show both type of mechanism. Based on the above study, debinding strategy for MSL based microfabricated ceramic structure has been proposed. © 2012 Elsevier B.V.
Resumo:
Model free simulations are performed to study the effect of the presence of side wall in compressible mixing of two parallel dissimilar gaseous streams with significant temperature difference. The turbulence statistics shows the three dimensional nature of the flow with and without the presence of side walls. The presence of side wall neither makes the flow field two dimensional, nor suppresses three dimensional disturbances. However, the comparison of shear layer growth rate and wall pressures reveal a better match with the two dimensional simulation results. This better match is explained on the basis of formation of oblique structures due to the presence of side walls which also suppress the distribution of momentum in third direction making the pressures to be higher as compared with the case without side walls. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The growth rate of high-speed mixing layer between two dissimilar gases is explored through the model free simulation results. To analyse the cause for the higher mixing layer growth rate in comparison to the existing values reported in literature, the results were compared with the model free simulations of mixing of two high-speed streams of nitrogen (similar gas) at matched temperature and density. The analysis indicates that pressure and density fluctuations no longer remain correlated completely for the mixing layer formed between two dissimilar gases at different temperatures in contrast to the complete pressure density correlation for similar gases. It has been observed that the correlation between temperature and density fluctuations is near -1.0 for dissimilar gases in the mixing layer region and is much higher than for similar gases. It is concluded that mixing layer of similar gases shows a decrease in growth rate due to compressibility effect, while that of dissimilar gases shows a decrease due to dominant temperature effect on density.
Resumo:
The behaviour of turbulent Prandtl/Schmidt number is explored through the model-free simulation results. It has been observed that compressibility affects the Reynolds scalar flux vectors. Reduced peak values are also observed for compressible convective Mach number mixing layer as compared with the incompressible convective Mach number counterpart, indicating a reduction in the mixing of enthalpy and species. Pr-t and Sc-t variations also indicate a reduction in mixing. It is observed that unlike the incompressible case, it is difficult to assign a constant value to these numbers due to their continuous variation in space. Modelling of Pr-t and Sc-t would be necessary to cater for this continuous spatial variation. However, the turbulent Lewis number is evaluated to be near unity for the compressible case, making it necessary to model only one of the Pr-t and Sc-t..
Resumo:
The nonminimal coupling of a self-interacting complex scalar field with gravity is studied. For a Robertson-Walker open universe the stable solutions of the scalar-field equations are time dependent. As a result of this, a novel spontaneous symmetry breaking occurs which leads to a varying effective gravitational coupling coefficient. It is found that the coupling coefficient changes sign below a critical ‘‘radius’’ of the Universe implying the appearance of repulsive gravity. The occurrence of the repulsive interaction at an early epoch facilitates singularity avoidance. The model also provides a solution to the horizon problem.
Resumo:
In the framework of the ECSK [Einstein-Cartan-Sciama-Kibble] theory of cosmology, a scalar field nonminimally coupled to the gravitational field is considered. For a Robertson-Walker open universe (k=0) in the radiation era, the field equations admit a singularity-free solution for the scale factor. In theory, the torsion is generated through nonminimal coupling of a scalar field to the gravitation field. The nonsingular nature of the cosmological model automatically solves the flatness problem. Further absence of event horizon and particle horizon explains the high degree of isotropy, especially of 2.7-K background radiation.
Resumo:
The present paper reports the results of a theoretical study of the forces and factors driving the solubilization of n-alkane solubilizates into the micellar core of some non-ionic surfactants, based on a micellar model which includes the cavity forming free energy as a component of micellization. The solubilizate is n-decane and the non-ionic surfactants considered are n-decyl-polyoxyethylene surfactants. The extent of solubilization, i.e. the mole fraction of the solubilizate within the core has been calculated. The results indicate that the incorporated solubilizate has more translational and rotational degrees of freedom as compared to those of the tail parts of the surfactants present in the core. This drives the total free energy of aggregation after solubilization into a more favourable direction. The results are in fair agreement with the experimental results.
Resumo:
Three dimensional digital model of a representative human kidney is needed for a surgical simulator that is capable of simulating a laparoscopic surgery involving kidney. Buying a three dimensional computer model of a representative human kidney, or reconstructing a human kidney from an image sequence using commercial software, both involve (sometimes significant amount of) money. In this paper, author has shown that one can obtain a three dimensional surface model of human kidney by making use of images from the Visible Human Data Set and a few free software packages (ImageJ, ITK-SNAP, and MeshLab in particular). Images from the Visible Human Data Set, and the software packages used here, both do not cost anything. Hence, the practice of extracting the geometry of a representative human kidney for free, as illustrated in the present work, could be a free alternative to the use of expensive commercial software or to the purchase of a digital model.
Resumo:
numerical study of the free energy gap (FEG) dependence of the electron-transfer rate in polar solvents is presented. This study is based on the generalized multidimensional hybrid model, which not only includes the solvent polarization and the molecular vibration modes, but also the biphasic polar response of the solvent. The free energy gap dependence is found to be sensitive to several factors, including the solvent relaxation rate, the electronic coupling between the surfaces, the frequency of the high-frequency quantum vibrational mode, and the magnitude of the solvent reorganization energy. It is shown that in some cases solvent relaxation can play an important role even in the Marcus normal regime. The minimal hybrid model involves a large number of parameters, giving rise to a diverse non-Marcus FEG behavior which is often determined collectively by these parameters. The model gives the linear free energy gap dependence of the logarithmic rate over a substantial range of FEG, spanning from the normal to the inverted regime. However, even for favorable values of the relevant parameters, a linear free energy gap dependence of the rate could be obtained only over a range of 5000-6000 cm(-1) (compared to the experimentally observed range of 10000 cm(-1) reported by Benniston et al.). The present work suggests several extensions/generalizations of the hybrid model which might be necessary to fully understand the observed free energy gap dependence.
Resumo:
In this paper free vibration characteristics of a centrally kinked cantilever beam of unit mass carrying masses at the kink (m(k)) and at the tip (m(t)) are analyzed. Frequency factors are presented for the first two modes for different combinations of m(k),m(t) and the kink angle delta. A relationship of the form f(m(k),m(t), delta) = m(k) + m(t)(4 + 10/3 cos delta+ 2/3 cos(2) delta)=const appears to give the same fundamental frequency for a given delta and different combinations of [m(k), m(t)]. Mode shapes as well as bending moments at the support and at the kink are also discussed. The utility of a discrete beam model in understanding the free vibration characteristics is also highlighted.