17 resultados para Large amounts


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mouse and human malarial parasites, Plasmodium berghei and Plasmodium falciparum, respectively, synthesize heme de novo following the standard pathway observed in animals despite the availability of large amounts of heme, derived from red cell hemoglobin, which is stored as hemozoin pigment, The enzymes, delta-aminolevulinate dehydrase (ALAD), coproporphyrinogen oxidase, and ferrochelatase are present at strikingly high levels in the P, berghei infected mouse red cell in vivo, The isolated parasite has low levels of ALAD and the data clearly indicate it to be of red cell origin. The purified enzyme preparations from the uninfected red cell and the parasite are identical in kinetic properties, subunit molecular weight, cross-reaction with antibodies to the human enzyme, and N-terminal amino acid sequence. Immunogold electron microscopy of the infected culture indicates that the enzyme is present inside the parasite and, therefore, is not a contaminant, The parasite derives functional ALAD from the host and the enzyme binds specifically to isolated parasite membrane in vitro, suggestive of the involvement of a receptor in its translocation into the parasite, While, ALAD, coproporphyrinogen oxidase, and ferrochelatase from the parasite and the uninfected red cell supernatant have identical subunit molecular weights on SDS-polyacrylamide gel electrophoresis and show immunological cross-reaction with antibodies to the human enzymes, as revealed by Western analysis, the first enzyme of the pathway, namely, delta-aminolevulinate synthase (ALAS) in the parasite, unlike that of the red cell host, does not cross-react with antibodies to the human enzyme, However, ALAS enzyme activity in the parasite is higher than that of the infected red cell supernatant. We therefore conclude that the parasite, while making its own ALAS, imports ALAD and perhaps most of the other enzymes of the pathway from the host to synthesize heme de novo, and this would enable it to segregate this heme from the heme derived from red cell hemoglobin degradation, ALAS of the parasite and the receptor(s) involved in the translocation of the host enzymes into the parasite would be unique drug targets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have designed a novel coupled transcriptional construct wherein Escherichia coil uracil DNA glycosylase (UDC:) and Bacillus subtilis phage PBS-2 encoded uracil DNA glycosylase inhibitor protein (Ugi) genes were cloned in tandem, downstream of an inducible promoter (P-trc). Use of this bicistronic operon has allowed purification of large amounts of UDG-Ugi complex formed in vivo. The system has also been exploited for purification of large amounts of Ugi. While establishing the expression system, one of the constructs showed detectable suppression of UAG termination codon and resulted in accumulation of a minor population of a putative readthrough polypeptide cor responding to UDG. We discuss the likely occurrence of such a phenomenon in overproduction of other recombinant proteins. Finally, the usefulness of the operon construct in convenient mutational analysis to study the mechanism of UDG-Ugi interaction is also discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Developing novel drugs against the unicellular parasite Plasmodium is complicated by the paucity of simple screening systems. Heat-shock proteins are an essential class of proteins for the parasite's cyclical life style between different cellular milieus and temperatures. The molecular chaperone Hsp90 assists a large variety of proteins, but its supporting functions for many proteins that are important for cancer have made it into a well-studied drug target. With a better understanding of the differences between Hsp90 of the malarial parasite and Hsp90 of its human host, new therapeutic options might become available. We have generated a set of isogenic strains of the budding yeast Saccharomyces cerevisiae where the essential yeast Hsp90 proteins have been replaced with either of the two human cytosolic isoforms Hsp90 alpha or Hsp90 beta, or with Hsp90 from Plasmodium falciparum (Pf). All strains express large amounts of the Flag-tagged Hsp90 proteins and are viable. Even though the strain with Pf Hsp90 grows more poorly, it provides a tool to reconstitute additional aspects of the parasite Hsp90 complex and its interactions with substrates in yeast as a living test tube. Upon exposure of the set of Hsp90 test strains to the two Hsp90 inhibitors radicicol (Rd) and geldanamycin (GA), we found that the strain with Pf Hsp90 is relatively more sensitive to GA than to Rd compared to the strains with human Hsp90's. This indicates that this set of yeast strains could be used to screen for new Pf Hsp90 inhibitors with a wider therapeutic window.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel solid-solution precursor method for the preparation of fine-particle cobaltites at low temperatures has been described. The precursors, hydrazinium metal hydrazine carboxylate hydrates, N2H5M1/3Co2/3(N2H3COO)3 · H2O, where M = Mg, Mn, Fe, Co, Ni, and Zn, decompose in air <250°C to yield corresponding metal cobaltites, MCo2O4. Formation of cobaltites has been confirmed by thermogravimetry (TG) weight loss, IR, and X-ray diffraction. Combustion of the precursor in air yields fine-particle cobaltites with surface areas in the range of 12–115 m2g−1 and particle sizes of 1–40 μm. Low decomposition temperatures of the precursors accompanied by the evolution of large amounts of gases appear to control the particle size of the cobaltites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CD4+ and gamma delta T cells are activated readily by Mycobacterium tuberculosis. To examine their role in the human immune response to M. tuberculosis, CD4+ and gamma delta T cells from healthy tuberculin-positive donor were studied for patterns of Ag recognition, cytotoxicity, and cytokine production in response to M. tuberculosis-infected mononuclear phagocytes. Both T cell subsets responded to intact M. tuberculosis and its cytosolic Ags. However, CD4+ and gamma delta T cells differed in the range of cytosolic Ags recognized: reactivity to a wide m.w. range of Ags for CD4+ T cells, and a restricted pattern for gamma delta T cells, with dominance of Ags of 10 to 15 kDa. Both T cell subsets were equally cytotoxic for M. tuberculosis-infected monocytes. Furthermore, both CD4+ and gamma delta T cells produced large amounts of IFN-gamma: mean pg/ml of IFN-gamma in supernatants was 2458 +/- 213 for CD4+ and 2349 +/- 245 for gamma delta T cells. By filter-spot ELISA (ELISPOT), the frequency of IFN-gamma-secreting gamma delta T cells was one-half of that of CD4+ T cells in response to M. tuberculosis, suggesting that gamma delta T cells on a per cell basis were more efficient producers of IFN-gamma than CD4+ T cells. In contrast, CD4+ T cells produced more IL-2 than gamma delta T cells, which correlated with diminished T cell proliferation of gamma delta T cells compared with CD4+ T cells. These results indicate that CD4+ and gamma delta T cell subsets have similar effector functions (cytotoxicity, IFN-gamma production) in response to M. tuberculosis-infected macrophages, despite differences in the Ags recognized, IL-2 production, and efficiency of IFN-gamma production.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dehydroamino acids are important precursors for the synthesis of a number of unnatural amino acids and are structural components in many biologically active peptide derivatives. However, efficient synthetic procedures for their production in large amounts and without side reactions are limited. We report here an improved procedure for the synthesis of dehydroalanine and dehydroamino butyric acid from the carbonate derivatives of serine and threonine using TBAF. The antiselective E-2 elimination of the carbonate derivatives of serine and threonine using TBAF is milder and more efficient than other available procedures. The elimination reaction is completed in less than 10 min with various carbonate derivatives studied and the methodology is very efficient for the synthesis of dehydroamino acids and dehydropeptides. The procedure thus provides an easy access to key synthetic precursors and can be used to introduce interesting structural elements to designed peptides. Copyright

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study of the nutritional requirements of Arthrobacter strain C19d which accumulates alanine in large amounts in the culture medium. 1evealed that the organism needs thiamine for its growth. A Iso the alanine accumulation by this strain was found to be related to thiamine concentration in the medium. The optimum concentration of thiamine for alanine accumulation (20 tJ.g/mJ) Was also optimum for the growth of the organism indicating thereby that alanine accumulation by this strain is a growth associated process rather than far removed from it. Among the various growth promoters tried yeast extract was found to be superior from the point of view of alanine yield and it wa5 also superior to giving thiamine alone in the medium. A concentration of 0.02% yeast extract was found to be optimum for alanine occumulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Unilateral ischemia in the right cerebral hemisphere of the rat was induced by ligation of the right common carotid artery coupled with controlled hemorrhage to produce hypotension (25±8 mm/Hg). Where indicated after 30 min of ischemia, the withdrawn blood was reinfused to restore arterial pressure to normal. Mitochondria isolated from the ipsilateral hemisphere after 30 min of ischemia showed significantly lower respiratory rates than the organelles isolated from the contralateral side. Oxidation of NAD+-linked substrates was more sensitive to inhibition in ischemia (30%) than was of ferrocytochromec (12%), succinate oxidation being intermediate. The activities of membrane-bound dehydrogenases (both NADH and succinate-linked) were also significantly lowered. Ischemia did not affect the cytochrome content of mitochondria. Respiratory activity (NAD+-linked) of mitochondria isolated from the ipsilateral hemisphere was twice as sensitive to inhibition by fatty acid as was of preparations from the contralateral side. Mitochondria isolated from cerebral cortex after 90 min of post-ischemic reperfusion showed no significant improvement in the rate of substrate oxidation. Adenine nucleotide translocase activity and energy-dependent Ca2+ uptake, both of which decreased significantly in mitochondria isolated from the ischemic brain, showed little recovery, on reperfusion. These observations suggested the strong possibility that the deleterious effects of ischemia on mitochondrial respiratory function might be mediated by free fatty acids that are known to accumulate in large amounts in ischemic tissues. The pattern of inhibition of ATPase activity was consistent with this view.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Important issues of water and thermal history affecting ion transport in a representative plastic crystalline lithium salt electrolyte: succinonitrile (SN)-lithium perchlorate (LiClO4) are discussed here. Ionic conductivity of electrolytes with high lithium salt amounts (similar to 1 M) in SN at a particular temperature is known to be influenced both by the trans-gauche isomerism and ion association (solvation), the two most important intrinsic parameters of the plastic solvent. In the present study both water and thermal history influence SN and result in enhancement of ionic conductivity of 1 M LiClO4-SN electrolyte. Systematic observations reveal that the presence of water in varying amounts promote ion-pair dissociation in the electrolyte. While trace amounts (approximate to 1-15 ppm) do not affect the trans-gauche isomerism of SN, the presence of water in large amounts (approximate to 5500 ppm) submerges the plasticity of SN. Subjugating the electrolyte to different thermal protocol resulted in enhancement of trans concentration only. This is an interesting observation as it demonstrates a simple and effective procedure involving utilization of an optimized set of external parameters to decouple solvation from trans-gauche isomerism. Observations from the ionic conductivity of various samples were accounted by changes in signature isomer and ion-association bands in the mid-IR regime and also from plastic to normal crystal transition temperature peak obtained from thermal studies. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The developing seeds of Actinodaphne hookeri were investigated to delineate their ability to synthesize large amounts of trilaurin. Until 88 days after flowering the embryos contained 71% neutral lipids (NL) and 29% phospholipids (PL) and both these components contained C-16:0, C-18:0, C-18:2, and C-18:3 as the major fatty acids (FA). At 102 days after flowering the seeds began to accumulate triacylglycerols (TAG) and to synthesize lauric acid (C-12:0). By 165 days after flowering, when the seeds were mature, they contained about 99% NL and 1% FL. At this stage the TAG contained exclusively C-12:0, while the PL consisted of long-chain fatty acids (LCFA) only. Leaf lipids in contrast did not contain any C-12:0. Experiments on [1-C-14]acetate incorporation into developing seed slices showed that at 88 days after flowering only 4% of the label was in TAG, 1% in diacylglycerols (DAG), and 87% in FL. One hundred two days after flowering seeds incorporated only 2% of the label into TAG, 30% into DAG, and 64% into FL. In contrast at 114 days after flowering 71% of the label was incorporated into TAG, 25% into DAG, and only 2% into FL. Analysis of labeled FA revealed that up to 102 days after flowering it was incorporated only into LCFA, whereas at 114 days after flowering it was incorporated exclusively into C-12:0. Furthermore, 67% of the label in PL at 114 days after flowering was found to be dilaurylglycerophosphate. Analysis of the label in DAG at this stage showed that it was essentially in dilaurin species. These observations indicate the induction of enzymes of Kennedy pathway for the specific synthesis of trilaurin at about 114 days after flowering, Homogenates of seeds (114 days after flowering) incubated with labeled FA in the presence of glycerol-3-phosphate and coenzymes A and ATP incorporated 84% of C-12:0 and 61% of C-14:0, but not C-16:0, C-18:2, and C-18:3, into TAG. In contrast the LCFA were incorporated preferentially into FL. It is concluded that, between 102 and 114 days after flowering, a switch occurs in A. hookeri for the synthesis of C-12:0 and trilaurin which is tissue specific. Since the seed synthesizes exclusively C-12:0 at 114 days after flowering onwards and incorporates specifically into TAG, this system appears to be ideal for identifying the enzymes responsible for medium-chain fatty acid as well as trilaurin synthesis and for exploiting them for genetic engineering. (C) 1994 Academic Press, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[1] During a comprehensive aerosol field campaign, simultaneous measurements were made of aerosol spectral optical depths, black carbon mass concentration (M-b), total (M-t) and size segregated aerosol mass concentrations over an urban continental location, Bangalore (13 degreesN, 77 degreesE, 960 m msl), in India. Large amounts of BC were observed; both in absolute terms and fraction of total mass (similar to11%) and submicron mass (similar to23%) implying a significantly low single scatter albedo. The aerosol visible optical depth (tau(p)) was in the range 0.24 to 0.45. Estimated surface forcing is as high as -23 W m(-2) and top of the atmosphere (TOA) forcing is +5 Wm(-2) during relatively cleaner periods (tau(p) similar to 0.24). The net atmospheric absorption translates to an atmospheric heating of similar to0.8 K day(-1) for cleaner periods and similar to1.5 K day(-1) for less cleaner periods (tau(p) similar to 0.45). Our observations raise several issues, which may have impacts to regional climate and monsoon.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Indian subcontinent divides the north Indian Ocean into two tropical basins, namely the Arabian Sea and the Bay of Bengal. The Arabian Sea has high salinity whereas the salinity of the Bay of Bengal is much lower due to the contrast in freshwater forcing of the two basins. The freshwater received by the Bay in large amounts during the summer monsoon through river discharge is flushed out annually by ocean circulation. After the withdrawal of the summer monsoon, the Ganga – Brahmaputra river plume flows first along the Indian coast and then around Sri Lanka into the Arabian Sea creating a low salinity pool in the southeastern Arabian Sea (SEAS). In the same region, during the pre-monsoon months of February – April, a warm pool, known as the Arabian Sea Mini Warm Pool (ASMWP), which is distinctly warmer than the rest of the Indian Ocean, takes shape. In fact, this is the warmest region in the world oceans during this period. Simulation of the river plume and its movement as well as its implications to thermodynamics has been a challenging problem for models of Indian Ocean. Here we address these issues using an ocean general circulation model – first we show that the model is capable of reproducing fresh plumes in the Bay of Bengal as well as its movement and then we use the model to determine the processes that lead to formation of the ASMWP. Hydrographic observations from the western Bay of Bengal have shown the presence of a fresh plume along the northern part of the Indian coast during summer monsoon. The Indian Ocean model when forced by realistic winds and climatological river discharge reproduces the fresh plume with reasonable accuracy. The fresh plume does not advect along the Indian coast until the end of summer monsoon. The North Bay Monsoon Current, which flows eastward in the northern Bay, separates the low salinity water from the more saline southern parts of the bay and thus plays an important role in the fresh water budget of the Bay of Bengal. The model also reproduces the surge of the fresh-plume along the Indian coast, into the Arabian Sea during northeast monsoon. Mechanisms that lead to the formation of the Arabian Sea Mini Warm Pool are investigated using several numerical experiments. Contrary to the existing theories, we find that salinity effects are not necessary for the formation of the ASMWP. The orographic effects of the Sahyadris (Western Ghats) and resulting reduction in wind speed leads to the formation of the ASMWP. During November – April, the SEAS behave as a low-wind heatdominated regime where the evolution of sea surface temperature is solely determined by atmospheric forcing. In such regions the evolution of surface layer temperature is not dependent on the characteristics of the subsurface ocean such as the barrier layer and temperature inversion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the Himalayas, large area is covered by glaciers, seasonal snow and changes in its extent can influence availability of water in the Himalayan Rivers. In this paper, changes in glacial extent, glacial mass balance and seasonal snow cover have been discussed. Field and satellite based investigations suggest, most of the Himalayan glaciers are retreating though the rate of retreat is varying from glacier to glacier, ranging from few meters to almost 50 meters per year, depending upon the numerous glacial, terrain and meteorological parameters. Retreat was estimated for 1868 glaciers in eleven basins distributed across the Indian Himalaya since 1962 to 2001/02. Estimates show an overall reduction in glacier area from 6332 to 5329 sq km, an overall deglaciation of 16 percent.Snow line at the end of ablation season on the Chhota Shigri glacier suggests a change in altitude from 4900 to 5200 m from late 1970’s to the present. Seasonal snow cover monitoring of the Himalaya has shown large amounts of snow cover depletion in early part of winter, i.e. from October to December. For many basins located in lower altitude and in south of Pir Panjal range, snow ablation was observed through out the winter season. In addition, average stream runoff of the Baspa basin during the month of December shows an increase by 75 per cent. This combination of glacial retreat, negative mass balance, early melting of seasonal snow cover and winter time increase in stream runoff suggest an influence of climate change on the Himalayan cryosphere.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report the encapsulation of optical brightening agent (OBA) into hollow microcapsules prepared by the controlled Layer- by-Layer (LbL) self-assembly process, achieved by the sequential adsorption of oppositely charged polyelectrolytes using negatively charged silica template. Loading takes place by spontaneous deposition method which was proved by confocal laser scanning microscopy (CLSM) using rhodamine 6G (Rd6G) as a fluorescent probe. The loading of the OBA into the microcapsules was found to be dependent on the feeding concentration, pH of the medium, and loading temperature. The encapsulation efficiency of OBA decreased on increasing feeding concentration. Maximum loading was observed at pH 4 and amount of OBA loaded decreased with increase in pH. The loaded OBA was released in a sustained manner for 8 h. No degradation of the OBA was observed during the process of encapsulation and release. Polyelectrolyte capsules potentially offer an innovative way of encapsulating large amounts of active materials for a variety of applications. (c) 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 127: 1609-1614, 2013

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A newly designed fluorescent aluminum(III) complex (L'-Al; 2) of a structurally characterized non-fluorescent rhodamine Schiff base (L) has been isolated in pure form and characterized using spectroscopic and physico-chemical methods with theoretical density functional theory (DFT) support. On addition of Al(III) ions to a solution of L in HEPES buffer (1 mM, pH 7.4; EtOH-water, 1 : 3 v/v) at 25 degrees C, the systematic increase in chelation-enhanced fluorescence (CHEF) enables the detection of Al(III) ions as low as 60 nM with high selectivity, unaffected by the presence of competitive ions. Interestingly, the Al(III) complex (L'-Al; 2) is specifically able to detect fluoride ions by quenching the fluorescence in the presence of large amounts of other anions in the HEPES buffer (1 mM, pH 7.4) at 25 degrees C. On the basis of our experimental and theoretical findings, the addition of Al3+ ions to a solution of L helps to generate a new fluorescence peak at 590 nm, due to the selective binding of Al3+ ions with L in a 1 : 1 ratio with a binding constant (K) of 8.13 x 10(4) M-1. The Schiff base L shows no cytotoxic effect, and it can therefore be employed for determining the intracellular concentration of Al3+ and F-ions by 2 in living cells using fluorescence microscopy.