174 resultados para LONG-RANGE INTERACTIONS
Resumo:
A procedure is offered for evaluating the forces between classical, charged solitons at large distances. This is employed for the solitons of a complex, scalar two-dimensional field theory with a U(1) symmetry, that leads to a conserved chargeQ. These forces are the analogues of the strong interaction forces. The potential,U(Q, R), is found to be attractive, of long range, and strong when the coupling constants in the theory are small. The dependence ofU(Q, R) onQ, the sum of the charges of the two interacting solitons (Q will refer to isospin in the SU(2) generalisation of the U(1) symmetric theory) is of importance in the theory of strong interactions; group theoretical considerations do not give such information. The interaction obtained here will be the leading term in the corresponding quantum field theory when the coupling-constants are small.
Resumo:
We study the bipartite entanglement of strongly correlated systems using exact diagonalization techniques. In particular, we examine how the entanglement changes in the presence of long-range interactions by studying the Pariser-Parr-Pople model with long-range interactions. We compare the results for this model with those obtained for the Hubbard and Heisenberg models with short-range interactions. This study helps us to understand why the density matrix renormalization group (DMRG) technique is so successful even in the presence of long-range interactions. To better understand the behavior of long-range interactions and why the DMRG works well with it, we study the entanglement spectrum of the ground state and a few excited states of finite chains. We also investigate if the symmetry properties of a state vector have any significance in relation to its entanglement. Finally, we make an interesting observation on the entanglement profiles of different states (across the energy spectrum) in comparison with the corresponding profile of the density of states. We use isotropic chains and a molecule with non-Abelian symmetry for these numerical investigations.
Resumo:
Electronic, magnetic, or structural inhomogeneities ranging in size from nanoscopic to mesoscopic scales seem endemic and are possibly generic to colossal magnetoresistance manganites and other transition metal oxides. They are hence of great current interest and understanding them is of fundamental importance. We show here that an extension, to include long-range Coulomb interactions, of a quantum two-fluid l-b model proposed recently for manganites [Phys. Rev. Lett. 92, 157203 (2004)] leads to an excellent description of such inhomogeneities. In the l-b model two very different kinds of electronic states, one localized and polaronic (l) and the other extended or broad band (b) coexist. For model parameters appropriate to manganites and even within a simple dynamical mean-field theory (DMFT) framework, it describes many of the unusual phenomena seen in manganites, including colossal magnetoresistance (CMR), qualitatively and quantitatively. However, in the absence of long-ranged Coulomb interaction, a system described by such a model would actually phase separate, into macroscopic regions of l and b electrons, respectively. As we show in this paper, in the presence of Coulomb interactions, the macroscopic phase separation gets suppressed and instead nanometer scale regions of polarons interspersed with band electron puddles appear, constituting a kind of quantum Coulomb glass. We characterize the size scales and distribution of the inhomogeneity using computer simulations. For realistic values of the long-range Coulomb interaction parameter V-0, our results for the thresholds for occupancy of the b states are in agreement with, and hence support, the earlier approach mentioned above based on a configuration averaged DMFT treatment which neglects V-0; but the present work has features that cannot be addressed in the DMFT framework. Our work points to an interplay of strong correlations, long-range Coulomb interaction, and dopant ion disorder, all inevitably present in transition metal oxides as the origin of nanoscale inhomogeneities rather than disorder frustrated phase competition as is generally believed. As regards manganites, it argues against explanations for CMR based on disorder frustrated phase separation and for an intrinsic origin of CMR. Based on this, we argue that the observed micrometer (meso) scale inhomogeneities owe their existence to extrinsic causes, e.g., strain due to cracks and defects. We suggest possible experiments to validate our speculation.
Resumo:
Pentacyclic ketones 10a-e (snoutan-9-ones) undergo nucleophilic additions with the same facial preference as the corresponding norsnoutanones 9a-e, but with markedly reduced selectivity, revealing the involvement of electrostatic effects in the former and implying the importance of hyperconjugative orbital interactions in determining pi-face selectivity in the latter systems.
Resumo:
We discuss the assembly of a three-dimensional molecular crystal in terms of short-range supramolecular synthons that spontaneously organize themselves according to Aufbau principles into long-range geometries characteristic of the molecules themselves. For this purpose we have examined the systematic changes in the known crystal structures of a family of fluorobenzenes, C6H6-nFn, where 0 <= n <= 6. Crystal assembly is initiated by forming long-range synthon Aufbau modules (LSAM) that carry the imprint of the synthons. For example, when 1 <= n <= 5 the short-range synthons use H center dot center dot center dot F interactions to form the LSAMs. In the n = 0 and n = 6 compounds, the synthons are H center dot center dot center dot C and F center dot center dot center dot C interactions, respectively. The LSAMs are usually one-dimensional. In this study we show that these 1D LSAMs assemble into 2D quasi-hexagonal close-packed layers. The 3D crystal structure is obtained from the various kinds of close-packing known for these 2D layers. The final stages of this 1D -> 2D -> 3D assembly seem to be more influenced by the packing of LSAMs than by any other factor. In these final stages, there may not be so much influence exerted by the stronger short-range synthons. We discuss the evolution of these fluorobenzene crystal structures in terms of putative LSAMs and the purely geometric relationships between the n and (6 - n) compounds that can thus be expected. Such particle-hole pairs show structural similarities. Our discussion is quantified by the interpretation of intermolecular distances in terms of atomic sizes and with qualitative predictions of magnetic model systems.
Resumo:
We discuss the assembly of a three-dimensional molecular crystal in terms of short-range supramolecular synthons that spontaneously organize themselves according to Aufbau principles into long-range geometries characteristic of the molecules themselves. For this purpose we have examined the systematic changes in the known crystal structures of a family of fluorobenzenes, C6H6-nFn, where 0 <= n <= 6. Crystal assembly is initiated by forming long-range synthon Aufbau modules (LSAM) that carry the imprint of the synthons. For example, when 1 <= n <= 5 the short-range synthons use H center dot center dot center dot F interactions to form the LSAMs. In the n = 0 and n = 6 compounds, the synthons are H center dot center dot center dot C and F center dot center dot center dot C interactions, respectively. The LSAMs are usually one-dimensional. In this study we show that these 1D LSAMs assemble into 2D quasi-hexagonal close-packed layers. The 3D crystal structure is obtained from the various kinds of close-packing known for these 2D layers. The final stages of this 1D -> 2D -> 3D assembly seem to be more influenced by the packing of LSAMs than by any other factor. In these final stages, there may not be so much influence exerted by the stronger short-range synthons. We discuss the evolution of these fluorobenzene crystal structures in terms of putative LSAMs and the purely geometric relationships between the n and (6 - n) compounds that can thus be expected. Such particle-hole pairs show structural similarities. Our discussion is quantified by the interpretation of intermolecular distances in terms of atomic sizes and with qualitative predictions of magnetic model systems.
Resumo:
Quantum dot arrays have been projected as the material of choice for next generation displays and photodetectors. Extensive ongoing research aims at improving optical and electrical efficiencies of such devices. We report experimental results on non-local long range emission intensity enhancement and anisotropy in quantum dot assemblies induced by isolated and partially aligned gold nanoantennas. Spatially resolved photoluminescence clearly demonstrate that the effect is maximum, when the longitudinal surface plasmon resonance of the nanoantenna is resonant with the emission maxima of the quantum dots. We estimated the decay length of this enhancement to be similar to 2.6 mu m, which is considerably larger than the range of near field interaction of metal nanoantenna. Numerical simulations qualitatively capture the near field behavior of the nanorods but fail to match the experimentally observed non-local effects. We have suggested how strong interactions of quantum dots in the close packed assemblies, mediated by the nanoantennas, could lead to such observed behavior. (C) 2014 AIP Publishing LLC.
Resumo:
A synthetic strategy is outlined whereby a binary cocrystal may be developed in turn into a ternary and finally into a quaternary cocrystal. The strategy hinges on the concept of the long-range synthon Aufbau module (LSAM) which is a large supramolecular synthon containing more than one type of intermolecular interaction. Modulation of these interactions may be possible with the use of additional molecular components so that higher level cocrystals are produced. We report six quaternary cocrystals here. All are obtained as nearly exclusive crystallization products when four appropriate solid compounds are taken together in solution for crystallization.
Resumo:
In our previous report on resonance energy transfer from a dye molecule to graphene [J. Chem. Phys.129, 054703 (2008)], we had derived an expression for the rate of energy transfer from a dye to graphene. An integral in the expression for the rate was evaluated approximately. We found a Yuwaka-type dependence of the rate on the distance. We now present an exact evaluation of the integral involved, leading to very interesting results. For short distances (z < 20 A), the present rate and the previous rate are in good agreement. For larger distances, the rate is found to have a z(-4) dependence on the distance, exactly. Thus we predict that for the case of pyrene on graphene, it is possible to observe fluorescence quenching up to a distance of 300 A. This is in sharp contrast to the traditional fluorescence resonance energy transfer where the quenching is observable only up to 100 A.
Resumo:
The potential description of a quark-antiquark system seems to work very well in describing a number of hadronic properties. However, the precise form of the potential is unknown. The changes in the low-lying eigenvalues as a result of changes in the long-range part of the potential are investigated in a non-perturbative manner. It is shown by considering a variety of examples that the low-lying eigenvalues are insensitive to the long-range part of the potential.
Resumo:
A two dimensional correlation experiment for the measurement of short and long range homo- and hetero- nuclear residual dipolar couplings (RDCs) from the broad and featureless proton NMR spectra including C-13 satellites is proposed. The method employs a single natural abundant C-13 spin as a spy nucleus to probe all the coupled protons and permits the determination of RDCs of negligible strengths. The technique has been demonstrated for the study of organic chiral molecules aligned in chiral liquid crystal, where additional challenge is to unravel the overlapped spectrum of enantiomers. The significant advantage of the method is demonstrated in better chiral discrimination using homonuclear RDCs as additional parameters. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
When the size (L) of a one-dimensional metallic conductor is less than the correlation length λ-1 of the Gaussian random potential, one expects transport properties to show ballistic behaviour. Using an invariant imbedding method, we study the exact distribution of the resistance, of the phase θ of the reflection amplitude of an incident electron of wave number k0, and of dθ/dk0, for λL ll 1. The resistance is non-self-averaging and the n-th resistance moment varies periodically as (1 - cos 2k0L)n. The charge fluctuation noise, determined by the distribution of dθ/dk0, is constant at low frequencies.
Resumo:
The long-range deuterium isotope effects on13C nuclear shielding are physically not yet completely understood. Two existing models for explaining these effects, vibrational and substituent, are compared here. The vibrational model is based on the Born-Oppenheimer approximation, but it can explain only one-bond deuterium effects. To the contrary, the substituent model may explain many long-range isotope effects, but it is controversial due to the assumption of some distinct electronic properties of isotopes. We explain how long-range deuterium isotope effects may be rationalized by the subtle electronic changes induced by isotope substitution, which does not violate the Born-Oppenheimer approximation.
Resumo:
The short range interactions in He2, Ne2 and Ar2 have been studied in terms of the electronic forces as functions of their internuclear separations employing their single configuration SCF wave functions. The results show that the constituent molecular orbitals behave differently in terms of the forces they exert on the nuclei during the interaction process. The different behaviour of the orbitals is also reflected in the redistribution of charges.