17 resultados para LC-APCI-MS
Resumo:
Ten new cyclic hexadepsipeptides, six isariins and four isaridins, from the fungus Isaria have been identified and characterized by high-performance liquid chromatography, coupled to tandem electrospray ionization mass spectrometry (LC-ESIMS/MS). The isariins possess a beta-hydroxy acid residue and five alpha-amino acids, while isaridins contain a beta-amino acid, an alpha-hydroxy acid, and four alpha-amino acids. One- and two-dimensional NMR spectroscopy confirmed the chemical identity of some of the isariin fractions. Mass spectral fragmentation patterns of [M + H](+) ions reveal clear diagnostic fragment ions for the isariins and isaridins. Previously described cyclic depsipeptides, isarfelins from Isaria felina (Guo, Y. X.; Liu, Q. H.; Ng, T. B.; Wang H. X. Peptides 2005, 26, 2384), are now reassigned as members of the isaridin family. Examination of isaridin sequences revealed significant similarities with cyclic hexadepsipeptides such as destruxins and roseotoxins. The structure of an isariin (isariin A) investigated by NMR spectroscopy indicated the presence of a hybrid alpha beta C-11 turn, formed by the beta-hydroxy acid and glycine residues and a (D)Leu-(L)Ala type II' beta-turn. Additionally, the inhibitory effect of isariins and an isaridin on the intra-erythrocytic growth of Plasmodium falciparum is presented.
Resumo:
Ten new cyclic hexadepsipeptides, six isariins and four isaridins, from the fungus Isaria have been identified and characterized by high-performance liquid chromatography, coupled to tandem electrospray ionization mass spectrometry (LC-ESIMS/MS). The isariins possess a beta-hydroxy acid residue and five alpha-amino acids, while isaridins contain a beta-amino acid, an alpha-hydroxy acid, and four alpha-amino acids. One- and two-dimensional NMR spectroscopy confirmed the chemical identity of some of the isariin fractions. Mass spectral fragmentation patterns of [M + H](+) ions reveal clear diagnostic fragment ions for the isariins and isaridins. Previously described cyclic depsipeptides, isarfelins from Isaria felina (Guo, Y. X.; Liu, Q. H.; Ng, T. B.; Wang H. X. Peptides 2005, 26, 2384), are now reassigned as members of the isaridin family. Examination of isaridin sequences revealed significant similarities with cyclic hexadepsipeptides such as destruxins and roseotoxins. The structure of an isariin (isariin A) investigated by NMR spectroscopy indicated the presence of a hybrid alpha beta C-11 turn, formed by the beta-hydroxy acid and glycine residues and a (D)Leu-(L)Ala type II' beta-turn. Additionally, the inhibitory effect of isariins and an isaridin on the intra-erythrocytic growth of Plasmodium falciparum is presented.
Resumo:
Gallic acid (GA), a key intermediate in the synthesis of plant hydrolysable tannins, is also a primary anti-inflammatory, cardio-protective agent found in wine, tea, and cocoa. In this publication, we reveal the identity of a gene and encoded protein essential for GA synthesis. Although it has long been recognized that plants, bacteria, and fungi synthesize and accumulate GA, the pathway leading to its synthesis was largely unknown. Here we provide evidence that shikimate dehydrogenase (SDH), a shikimate pathway enzyme essential for aromatic amino acid synthesis, is also required for GA production. Escherichia coli (E. coli) aroE mutants lacking a functional SDH can be complemented with the plant enzyme such that they grew on media lacking aromatic amino acids and produced GA in vitro. Transgenic Nicotiana tabacum lines expressing a Juglans regia SDH exhibited a 500% increase in GA accumulation. The J. regia and E. coli SDH was purified via overexpression in E. coli and used to measure substrate and cofactor kinetics, following reduction of NADP(+) to NADPH. Reversed-phase liquid chromatography coupled to electrospray mass spectrometry (RP-LC/ESI-MS) was used to quantify and validate GA production through dehydrogenation of 3-dehydroshikimate (3-DHS) by purified E. coli and J. regia SDH when shikimic acid (SA) or 3-DHS were used as substrates and NADP(+) as cofactor. Finally, we show that purified E. coli and J. regia SDH produced GA in vitro.
Resumo:
Hyperglycemia is widely recognized to be a potent stimulator of monocyte activity, which is a crucial event in the pathogenesis of atherosclerosis. We analyzed the monocyte proteome for potential markers that would enhance the ability to screen for early inflammatory status in Type 2 diabetes mellitus (T2DM), using proteomic technologies. Monocytic cells (THP-1) were primed with high glucose (HG), their protein profiles were analyzed using 2DE and the downregulated differentially expressed spots were identified using MALDI TOF/MS. We selected five proteins that were secretory in function with the help of bioinformatic programs. A predominantly downregulated protein identified as cyclophilin A (sequence coverage 98%) was further validated by immunoblotting experiments. The cellular mRNA levels of cyclophilin A in various HG-primed cells were studied using qRT-PCR assays and it was observed to decrease in a dose-dependent manner. LC-ESI-MS was used to identify this protein in the conditioned media of HG-primed cells and confirmed by Western blotting as well as ELISA. Cyclophilin A was also detected in the plasma of patients with diabetes. We conclude that cyclophilin A is secreted by monocytes in response to HG. Given the paracrine and autocrine actions of cyclophilin A, the secreted immunophilin could be significant for progression of atherosclerosis in type 2 diabetes. Our study also provides evidence that analysis of monocyte secretome is a viable strategy for identifying candidate plasma markers in diabetes.
Resumo:
The thermal degradation processes of two sulfur polymers, poly(xylylene sulfide) (PXM) and poly(xylylene disulfide) (PXD), were investigated in parallel by direct pyrolysis mass spectrometry (DPMS) and flash pyrolysis GC/MS (Py-GC/MS). Thermogravimetric data showed that these polymers decompose with two separate steps in the temperature ranges of 250-280 and 600-650 degrees C, leaving a high amount of residue (about 50% at 800 degrees C). The pyrolysis products detected by DPMS in the first degradation step of PXM and PXD were terminated by three types of end groups, -CH3, -CH2SH, and -CH=S, originating from thermal cleavage reactions involving a series of homolytic chain scissions followed by hydrogen transfer reactions, generating several oligomers containing some intact xylylene sulfide repeating units. The presence of pyrolysis compounds containing some stilbene-like units in the first degradation step has also been observed. Their formation has been accounted for with a parallel cleavage involving the elimination of H2S from the PXM main chains. These unsaturated units can undergo cross-linking at higher temperatures, producing the high amount of char residue observed. The thermal degradation compounds detected by DPMS in the second decomposition step at about 600-650 degrees C were constituted of condensed aromatic molecules containing dihydrofenanthrene and fenanthrene units. These compounds might be generated from the polymer chains containing stilbene units, by isomerization and dehydrogenation reactions. The pyrolysis products obtained in the Py-GC/MS of PXM and PXD at 610 degrees C are almost identical. The relative abundance in the pyrolysate and the spectral properties of the main pyrolysis products were found to be in generally good agreement with those obtained by DPMS. Polycyclic aromatic hydrocarbons (PAHs) were also detected by Py-GC/MS but in minor amounts with respect to DPMS. This apparent discrepancy was due to the simultaneous detection of PAHs together with all pyrolysis products in the Py-GC/MS, whereas in DPMS they were detected in the second thermal degradation step without the greatest part of pyrolysis compounds generated in the first degradation step. The results obtained by DPMS and PSI-GC/MS experiments showed complementary data for the degradation of PXM and PXD and, therefore, allowed the unequivocal formulation of the thermal degradation mechanism for these sulfur-containing polymers.
Resumo:
3d and 4d core-level XPS spectra for CePd3, a mixed-valence system, have been measured. Each spectrum exhibits two sets of structures, each corresponding to one of the valence states of cerium. Thus the usefulness of XPS, which has so far not been used extensively to investigate the mixed-valence cerium systems, is pointed out.
Resumo:
Background: Trypanosoma evansi infections, commonly called 'surra', cause significant economic losses to livestock industry. While this infection is mainly restricted to large animals such as camels, donkeys and equines, recent reports indicate their ability to infect humans. There are no World Animal Health Organization (WAHO) prescribed diagnostic tests or vaccines available against this disease and the available drugs show significant toxicity. There is an urgent need to develop improved methods of diagnosis and control measures for this disease. Unlike its related human parasites T. brucei and T. cruzi whose genomes have been fully sequenced T. evansi genome sequence remains unavailable and very little efforts are being made to develop improved methods of prevention, diagnosis and treatment. With a view to identify potential diagnostic markers and drug targets we have studied the clinical proteome of T. evansi infection using mass spectrometry (MS).Methodology/Principal Findings: Using shot-gun proteomic approach involving nano-lc Quadrupole Time Of Flight (QTOF) mass spectrometry we have identified over 160 proteins expressed by T. evansi in mice infected with camel isolate. Homology driven searches for protein identification from MS/MS data led to most of the matches arising from related Trypanosoma species. Proteins identified belonged to various functional categories including metabolic enzymes; DNA metabolism; transcription; translation as well as cell-cell communication and signal transduction. TCA cycle enzymes were strikingly missing, possibly suggesting their low abundances. The clinical proteome revealed the presence of known and potential drug targets such as oligopeptidases, kinases, cysteine proteases and more.Conclusions/Significance: Previous proteomic studies on Trypanosomal infections, including human parasites T. brucei and T. cruzi, have been carried out from lab grown cultures. For T. evansi infection this is indeed the first ever proteomic study reported thus far. In addition to providing a glimpse into the biology of this neglected disease, our study is the first step towards identification of diagnostic biomarkers, novel drug targets as well as potential vaccine candidates to fight against T. evansi infections.
Resumo:
Escherichia coli RNA polymerase is a multi-subunit enzyme containing alpha(2)beta beta'omega sigma, which transcribes DNA template to intermediate RNA product in a sequence specific manner. Although most of the subunits are essential for its function, the smallest subunit omega (average molecular mass similar to 10,105 Da) can be deleted without affecting bacterial growth. Creating a mutant of the omega subunit can aid in improving the understanding of its role. Sequencing of rpoZ gene that codes for omega subunit from a mutant variant suggested a substitution mutation at position 60 of the protein: asparagine (N) -> aspartic acid (D). This mutation was verified at the protein level by following a typical mass spectrometry (MS) based bottom-up proteomic approach. Characterization of in-gel trypsin digested samples by reverse phase liquid chromatography (LC) coupled to electrospray ionization (ESI)-tandem mass spectrometry (MS/MS) enabled in ascertaining this mutation. Electron transfer dissociation (ETD) of triply charged (M + 3H)(3+)] tryptic peptides (residues 53-67]), EIEEGLINNQILDVR from wild-type and EIEEGLIDNQILDVR from mutant, facilitated in unambiguously determining the site of mutation at residue 60.
Resumo:
The present research work reports the eosin Y (EY) and fluorescein (FL) sensitized visible light degradation of phenol, 4-chlorophenol (CP), 2,4-dichlorophenol (DCP) and 2,4,6-trichlorophenol (TCP) using combustion synthesized nano-TiO2 (CS TiO2). The rate of degradation of the phenolic compounds was higher in the presence of EY/CS TiO2 compared to FL/CS TiO2 system. A detailed mechanism of sensitized degradation was proposed and a mechanistic model for the rate of degradation of the phenolic compound was derived using the pyramidal network reduction technique. It was found that at low initial dye concentrations, the rate of degradation of the phenolic compound is first order in the concentration of the dye, while at high initial dye concentrations, the rate is first order in the concentration of the phenolic compound. The order of degradation of the different phenolic compounds follows: CP > TCP > DCP > phenol. The different phenolic and dye intermediates that were formed during the degradation were identified by liquid chromatography-mass spectrometry (LC-MS) and the most probable pathway of degradation is proposed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A series of 2-haloethoxyethyl cholesteryl ethers has been synthesized. Each material shows attractive liquid-crystalline properties as revealed by differential scanning calorimetry, polarizing microscopy, and temperature-dependence of selective reflection characteristic of the cholesteric mesophase. These are interesting examples of simple, nonpolymeric, single component systems that show the cholesteric mesophase at room temperature.
Resumo:
GC-MS study of two fatty oil fractions from Artabotrys odoratissimus (leaves) indicated the presence of fifteen compounds namely, nonanoic acid; methyl phenyl propanoate; decanoic acid; diethyl phthalate; dibutyl phthalate; 2 - amino-3-ethyl biphenyl; 5-methyl-9-phenylnonan-3-ol; hexadeca-2,7,11-triene; 2,6-dimethyl-1-phenylhepta-1-one; 2,5-dimethyltetradecahydrophenenthrene; 1-phenylundecane; 1-isopropyl-4,6-dimethyl naphthalene; 5-(2-butyl phenyl)pent-3-en-2-ol; 1-phenyideca-1-one and 1-phenylundecan-1-one. Some of the compounds are rare occurring and biologically active.
Resumo:
A sensitive and selective liquid chromatographic-tandem mass spectrometric (LC-MS-MS) method was developed to determine olanzapine (OLZ) in human urine. After solid-phase extraction with SPE cartridge, the urine sample was analysed on a C-18 column (Symmetry 3.5 mu m, 50 x 4.6 mm i.d) interfaced with a triple quadrupole tandem mass spectrometer. Positive electrospray ionization was employed as the ionization source. The mobile phase consisted of ammonium acetate (pH 7.8)-acetonitrile (10:90, v/v). The method was linear over a concentration range of 1-100 ngml(-1). The lower limit of quantitation was 1 ngml(-1). The intra-day and inter-day relative standard deviation across three validation runs over the entire concentration range was < 11.5 %. The accuracy determined at three concentrations (8.0, 50.0 and 85.0 ngml(-1) OLZ) was within +/- 1.21 % in terms of relative errors.
Resumo:
beta-lactoglobulin is a rich source of bioactive peptides. The LC-MS separated tryptic peptides of buffalo colostrum beta-lactoglobulin (BLG-col) were computed based on MS-MS fragmentation for de novo sequencing. Among the selected peptides (P1-P8), a variant was detected with methionine at position 74 instead of glutamate. The sequences of two peptides were identical to hypocholesterolemic peptides whereas the remaining peptides were in accordance with buffalo milk beta-lactoglobulin. Comparative sequence analysis of BLG-col to milk beta-lactoglobulin was carried out using CLUSTALW2 and a molecular model for BLG-col was constructed (PMDB ID-PM0076812). The synthesized variant pentapeptide (IIAMK, m/z-576 Da) was found to inhibit angiotensin I-converting enzyme (ACE) with an IC50 of 498 +/- 2 mu M, which was rationalized through docking simulations using Molgrow virtual docker. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
Low power consumption per channel and data rate minimization are two key challenges which need to be addressed in future generations of neural recording systems (NRS). Power consumption can be reduced by avoiding unnecessary processing whereas data rate is greatly decreased by sending spike time-stamps along with spike features as opposed to raw digitized data. Dynamic range in NRS can vary with time due to change in electrode-neuron distance or background noise, which demands adaptability. An analog-to-digital converter (ADC) is one of the most important blocks in a NRS. This paper presents an 8-bit SAR ADC in 0.13-mu m CMOS technology along with input and reference buffer. A novel energy efficient digital-to-analog converter switching scheme is proposed, which consumes 37% less energy than the present state-of-the-art. The use of a ping-pong input sampling scheme is emphasized for multichannel input to alleviate the bandwidth requirement of the input buffer. To reduce the data rate, the A/D process is only enabled through the in-built background noise rejection logic to ensure that the noise is not processed. The ADC resolution can be adjusted from 8 to 1 bit in 1-bit step based on the input dynamic range. The ADC consumes 8.8 mu W from 1 V supply at 1 MS/s speed. It achieves effective number of bits of 7.7 bits and FoM of 42.3 fJ/conversion-step.
Resumo:
Side chain homologated derivatives of 2-chloro-3-(n-alkylamino)-1,4-naphthoquinone {n-alkyl: pentyl; L-5, hexyl; L-6, heptyl; L-7 and octyl; L-8} have been synthesized and characterized by elemental analysis, FT-IR, H-1 NMR, UV-visible spectroscopy and LC-MS. Compounds, L-4, n-alkyl: butyl; L-4}, L-6 and L-8 have been characterized by single crystal X-ray diffraction studies. The single crystal X-ray structures reveal that L-4 and L-8 crystallizes in P2(1) space group, while L-6 in P2(1)/c space group. Molecules of L-4 and L-8 from polymeric chains through C-H center dot center dot center dot O and N-H center dot center dot center dot O close contacts. L-6 is a dimer formed by N-H center dot center dot center dot O interaction. Slipped pi-pi stacking interactions are observed between quinonoid and benzenoid rings of L-4 and L-8. Orientations of alkyl group in L-4 and L-8 is on same side of the chain and polymeric chains run opposite to one another to form zip like structure to the alkyl groups. Antiproliferative activities of L-1 to L-8{n-alkyl: methyl; L-1, ethyl; L-2, propyl; L-3 and butyl; L-4} were studied in cancer cells of colon (COLO205), brain (U87MG) and pancreas (MIAPaCa2) where L-1, L-2 and L-3 were active in MIAPaCa2 (L-1 = 1-2 > L-3) and COLO205 (L-2 = L-3 > L-1) and inactive in U87MG. From antiproliferative studies with compounds L-1 to L-8 it can be concluded that homologation of 2-chloro-3-(n-alkylamino)-1,4-napthoquinone with saturated methyl groups yielded tissue specific compounds such as L-2 (for MIAPaCa2) and L-3 (for COLO205) with optimal activity. (c) 2013 Elsevier B.V. All rights reserved.