140 resultados para Job Shop Problem
Resumo:
The present work concerns with the static scheduling of jobs to parallel identical batch processors with incompatible job families for minimizing the total weighted tardiness. This scheduling problem is applicable in burn-in operations and wafer fabrication in semiconductor manufacturing. We decompose the problem into two stages: batch formation and batch scheduling, as in the literature. The Ant Colony Optimization (ACO) based algorithm called ATC-BACO algorithm is developed in which ACO is used to solve the batch scheduling problems. Our computational experimentation shows that the proposed ATC-BACO algorithm performs better than the available best traditional dispatching rule called ATC-BATC rule.
Resumo:
We consider the problem of matching people to jobs, where each person ranks a subset of jobs in an order of preference, possibly involving ties. There are several notions of optimality about how to best match each person to a job; in particular, popularity is a natural and appealing notion of optimality. However, popular matchings do not always provide an answer to the problem of determining an optimal matching since there are simple instances that do not adroit popular matchings. This motivates the following extension of the popular rnatchings problem:Given a graph G; = (A boolean OR J, E) where A is the set of people and J is the set of jobs, and a list < c(1), c(vertical bar J vertical bar)) denoting upper bounds on the capacities of each job, does there exist (x(1), ... , x(vertical bar J vertical bar)) such that setting the capacity of i-th, job to x(i) where 1 <= x(i) <= c(i), for each i, enables the resulting graph to admit a popular matching. In this paper we show that the above problem is NP-hard. We show that the problem is NP-hard even when each c is 1 or 2.
Resumo:
A model comprising several servers, each equipped with its own queue and with possibly different service speeds, is considered. Each server receives a dedicated arrival stream of jobs; there is also a stream of generic jobs that arrive to a job scheduler and can be individually allocated to any of the servers. It is shown that if the arrival streams are all Poisson and all jobs have the same exponentially distributed service requirements, the probabilistic splitting of the generic stream that minimizes the average job response time is such that it balances the server idle times in a weighted least-squares sense, where the weighting coefficients are related to the service speeds of the servers. The corresponding result holds for nonexponentially distributed service times if the service speeds are all equal. This result is used to develop adaptive quasi-static algorithms for allocating jobs in the generic arrival stream when the load parameters are unknown. The algorithms utilize server idle-time measurements which are sent periodically to the central job scheduler. A model is developed for these measurements, and the result mentioned is used to cast the problem into one of finding a projection of the root of an affine function, when only noisy values of the function can be observed
Resumo:
We consider the problem of minimizing the total completion time on a single batch processing machine. The set of jobs to be scheduled can be partitioned into a number of families, where all jobs in the same family have the same processing time. The machine can process at most B jobs simultaneously as a batch, and the processing time of a batch is equal to the processing time of the longest job in the batch. We analyze that properties of an optimal schedule and develop a dynamic programming algorithm of polynomial time complexity when the number of job families is fixed. The research is motivated by the problem of scheduling burn-in ovens in the semiconductor industry
Minimizing total weighted tardiness on heterogeneous batch processors with incompatible job families
Resumo:
In this paper, we address a scheduling problem for minimizing total weighted tardiness. The background for the paper is derived from the automobile gear manufacturing process. We consider the bottleneck operation of heat treatment stage of gear manufacturing. Real-life scenarios like unequal release times, incompatible job families, nonidentical job sizes, heterogeneous batch processors, and allowance for job splitting have been considered. We have developed a mathematical model which takes into account dynamic starting conditions. The problem considered in this study is NP-hard in nature, and hence heuristic algorithms have been proposed to address it. For real-life large-size problems, the performance of the proposed heuristic algorithms is evaluated using the method of estimated optimal solution available in literature. Extensive computational analyses reveal that the proposed heuristic algorithms are capable of consistently obtaining near-optimal statistically estimated solutions in very reasonable computational time.
Resumo:
A new theory of shock dynamics has been developed in the form of a finite number of compatibility conditions along shock rays. It has been used to study the growth or decay of shock strength for accelerating or decelerating piston starting with a nonzero piston velocity. The results show good agreement with those obtained by Harten's high resolution TVD scheme.
Resumo:
In this paper, we first recast the generalized symmetric eigenvalue problem, where the underlying matrix pencil consists of symmetric positive definite matrices, into an unconstrained minimization problem by constructing an appropriate cost function, We then extend it to the case of multiple eigenvectors using an inflation technique, Based on this asymptotic formulation, we derive a quasi-Newton-based adaptive algorithm for estimating the required generalized eigenvectors in the data case. The resulting algorithm is modular and parallel, and it is globally convergent with probability one, We also analyze the effect of inexact inflation on the convergence of this algorithm and that of inexact knowledge of one of the matrices (in the pencil) on the resulting eigenstructure. Simulation results demonstrate that the performance of this algorithm is almost identical to that of the rank-one updating algorithm of Karasalo. Further, the performance of the proposed algorithm has been found to remain stable even over 1 million updates without suffering from any error accumulation problems.
Resumo:
Recently, efficient scheduling algorithms based on Lagrangian relaxation have been proposed for scheduling parallel machine systems and job shops. In this article, we develop real-world extensions to these scheduling methods. In the first part of the paper, we consider the problem of scheduling single operation jobs on parallel identical machines and extend the methodology to handle multiple classes of jobs, taking into account setup times and setup costs, The proposed methodology uses Lagrangian relaxation and simulated annealing in a hybrid framework, In the second part of the paper, we consider a Lagrangian relaxation based method for scheduling job shops and extend it to obtain a scheduling methodology for a real-world flexible manufacturing system with centralized material handling.
Resumo:
Compulsators are power sources of choice for use in electromagnetic launchers and railguns. These devices hold the promise of reducing unit costs of payload to orbit. In an earlier work, the author had calculated the current distribution in compulsator wires by considering the wire to be split into a finite number of separate wires. The present work develops an integral formulation of the problem of current distribution in compulsator wires which leads to an integrodifferential equation. Analytical solutions, including those for the integration constants, are obtained in closed form. The analytical solutions present a much clearer picture of the effect of various input parameters on the cross-sectional current distribution and point to ways in which the desired current density distribution can be achieved. Results are graphically presented and discussed, with particular reference to a 50-kJ compulsator in Bangalore. Finite-element analysis supports the results.
Resumo:
Computation of the dependency basis is the fundamental step in solving the implication problem for MVDs in relational database theory. We examine this problem from an algebraic perspective. We introduce the notion of the inference basis of a set M of MVDs and show that it contains the maximum information about the logical consequences of M. We propose the notion of an MVD-lattice and develop an algebraic characterization of the inference basis using simple notions from lattice theory. We also establish several properties of MVD-lattices related to the implication problem. Founded on our characterization, we synthesize efficient algorithms for (a) computing the inference basis of a given set M of MVDs; (b) computing the dependency basis of a given attribute set w.r.t. M; and (c) solving the implication problem for MVDs. Finally, we show that our results naturally extend to incorporate FDs also in a way that enables the solution of the implication problem for both FDs and MVDs put together.
Resumo:
Formulation of quantum first passage problem is attempted in terms of a restricted Feynman path integral that simulates an absorbing barrier as in the corresponding classical case. The positivity of the resulting probability density, however, remains to be demonstrated.
Resumo:
A direct and simple approach, utilizing Watson's lemma, is presented for obtaining an approximate solution of a three-part Wiener-Hopf problem associated with the problem of diffraction of a plane wave by a soft strip.
Resumo:
Abstract is not available.
Resumo:
In this paper, we consider the bi-criteria single machine scheduling problem of n jobs with a learning effect. The two objectives considered are the total completion time (TC) and total absolute differences in completion times (TADC). The objective is to find a sequence that performs well with respect to both the objectives: the total completion time and the total absolute differences in completion times. In an earlier study, a method of solving bi-criteria transportation problem is presented. In this paper, we use the methodology of solvin bi-criteria transportation problem, to our bi-criteria single machine scheduling problem with a learning effect, and obtain the set of optimal sequences,. Numerical examples are presented for illustrating the applicability and ease of understanding.