48 resultados para Isometric knee extension torque
Resumo:
In this note, we show that a quasi-free Hilbert module R defined over the polydisk algebra with kernel function k(z,w) admits a unique minimal dilation (actually an isometric co-extension) to the Hardy module over the polydisk if and only if S (-1)(z, w)k(z, w) is a positive kernel function, where S(z,w) is the Szego kernel for the polydisk. Moreover, we establish the equivalence of such a factorization of the kernel function and a positivity condition, defined using the hereditary functional calculus, which was introduced earlier by Athavale [8] and Ambrozie, Englis and Muller [2]. An explicit realization of the dilation space is given along with the isometric embedding of the module R in it. The proof works for a wider class of Hilbert modules in which the Hardy module is replaced by more general quasi-free Hilbert modules such as the classical spaces on the polydisk or the unit ball in a'', (m) . Some consequences of this more general result are then explored in the case of several natural function algebras.
Resumo:
This paper reports the dynamic stability analysis of a single machine infinite bus system through torque angle loop analysis and forms an extension of the work on Block diagrams and torque angle loop analysis of synchronous machines reported by I. Nagy [3]. It aims to incorporate in the machine model, the damper windings (one on each axis) and to compare the dynamic behaviour of the system with and without damper windings. The effect of using different stabilizing signals (viz. active power and speed deviations) on the dynamic performance is analysed and the significant effect of damper windings on the dynamic behaviour of the system is highlighted.
Resumo:
A pulsewidth modulation (PWM) technique is proposed for minimizing the rms torque ripple in inverter-fed induction motor drives subject to a given average switching frequency of the inverter. The proposed PWM technique is a combination of optimal continuous modulation and discontinuous modulation. The proposed technique is evaluated both theoretically as well as experimentally and is compared with well-known PWM techniques. It is shown that the proposed method reduces the rms torque ripple by about 30% at the rated speed of the motor drive, compared to conventional space vector PWM.
Resumo:
The present work focuses on simulation of nonlinear mechanical behaviors of adhesively bonded DLS (double lap shear) joints for variable extension rates and temperatures using the implicit ABAQUS solver. Load-displacement curves of DLS joints at nine combinations of extension rates and environmental temperatures are initially obtained by conducting tensile tests in a UTM. The joint specimens are made from dual phase (DP) steel coupons bonded with a rubber-toughened adhesive. It is shown that the shell-solid model of a DLS joint, in which substrates are modeled with shell elements and adhesive with solid elements, can effectively predict the mechanical behavior of the joint. Exponent Drucker-Prager or Von Mises yield criterion together with nonlinear isotropic hardening is used for the simulation of DLS joint tests. It has been found that at a low temperature (-20 degrees C), both Von Mises and exponent Drucker-Prager criteria give close prediction of experimental load-extension curves. However. at a high temperature (82 degrees C), Von Mises condition tends to yield a perceptibly softer joint behavior, while the corresponding response obtained using exponent Drucker-Prager criterion is much closer to the experimental load-displacement curve.
Resumo:
The paper presents a new criterion for designing a power-system stabiliser, which is that it should cancel the negative damping torque inherent in a synchronous generator and automatic voltage regulator. The method arises from analysis based on the properties of tensor invariance, but it is easily implemented, and leads to the design of an adaptive controller. Extensive computations and simulation have been performed, and laboratory tests have been conducted on a computer-controlled micromachine system. Results are presented illustrating the effectiveness of the adaptive stabiliser.
Resumo:
A new technique for reducing the torque pulsations in a conventional current source inverter fed induction motor drive is presented. This does not attempt to improve the current waveforms, but modifies the airgap MMF directly. This is based on the use of a motor with two sets of balanced phase windings, with a 30 electrical degree phase difference between them, and each set being fed from a conventional current source inverter. The two inverters are further connected in series so that they can operate from the same current source. As a consequence of this arrangement, the voltage rating of the components of each inverter is reduced, along with reduced torque ripple. This scheme has been experimentally verified and compared with the performance of a conventional scheme.
Resumo:
First, the non-linear response of a gyrostabilized platform to a small constant input torque is analyzed in respect to the effect of the time delay (inherent or deliberately introduced) in the correction torque supplied by the servomotor, which itself may be non-linear to a certain extent. The equation of motion of the platform system is a third order nonlinear non-homogeneous differential equation. An approximate analytical method of solution of this equation is utilized. The value of the delay at which the platform response becomes unstable has been calculated by using this approximate analytical method. The procedure is illustrated by means of a numerical example. Second, the non-linear response of the platform to a random input has been obtained. The effects of several types of non-linearity on reducing the level of the mean square response have been investigated, by applying the technique of equivalent linearization and solving the resulting integral equations by using laguerre or Gaussian integration techniques. The mean square responses to white noise and band limited white noise, for various values of the non-linear parameter and for different types of non-linearity function, have been obtained. For positive values of the non-linear parameter the levels of the non-linear mean square responses to both white noise and band-limited white noise are low as compared to the linear mean square response. For negative values of the non-linear parameter the level of the non-linear mean square response at first increases slowly with increasing values of the non-linear parameter and then suddenly jumps to a high level, at a certain value of the non-linearity parameter.
Resumo:
In this paper, direct torque control (DTC) algorithms for a split-phase induction machine (SPIM) are established. An SPIM has two sets of three-phase stator windings, with a shift of thirty electrical degrees between them. The significant contributions of this paper are: 1) two new methods of DTC technique for an SPIM are developed, called Resultant Flux Control Method and Individual Flux Control Method and 2) advantages and disadvantages of both methods are discussed. High torque ripple is a disadvantage for three-phase DTC. It is found that torque ripple in an SPIM can be significantly reduced without increasing the switching frequency.
Resumo:
A voltage source inverter-fed induction motor produces a pulsating torque due to application of nonsinusoidal voltages. Torque pulsation is strongly influenced by the pulsewidth modulation (PWM) method employed. Conventional space vector PWM (CSVPWM) is known to result in less torque ripple than sine-triangle PWM. This paper aims at further reduction in the pulsating torque by employing advanced bus-clamping switching sequences, which apply an active vector twice in a subcycle. This paper proposes a hybrid PWM technique which employs such advanced bus-clamping sequences in conjunction with a conventional switching sequence. The proposed hybrid PWM technique is shown to reduce the torque ripple considerably over CSVPWM along with a marginal reduction in current ripple.
Resumo:
Darken's quadratic formalism is extended to multicomponent solutions. Equations are developed for the representation of the integral and partial excess free energies, entropies and enthalpies in dilute multicomponent solutions. Quadratic formalism applied to multicomponent solutions is thermodynamically consistent. The formalism is compared with the conventional second order Maclaurin series or interaction parameter representation and the relations between them are derived. Advantages of the quadratic formalism are discussed.
Resumo:
First, the non-linear response of a gyrostabilized platform to a small constant input torque is analyzed in respect to the effect of the time delay (inherent or deliberately introduced) in the correction torque supplied by the servomotor, which itself may be non-linear to a certain extent. The equation of motion of the platform system is a third order nonlinear non-homogeneous differential equation. An approximate analytical method of solution of this equation is utilized. The value of the delay at which the platform response becomes unstable has been calculated by using this approximate analytical method. The procedure is illustrated by means of a numerical example. Second, the non-linear response of the platform to a random input has been obtained. The effects of several types of non-linearity on reducing the level of the mean square response have been investigated, by applying the technique of equivalent linearization and solving the resulting integral equations by using laguerre or Gaussian integration techniques. The mean square responses to white noise and band limited white noise, for various values of the non-linear parameter and for different types of non-linearity function, have been obtained. For positive values of the non-linear parameter the levels of the non-linear mean square responses to both white noise and band-limited white noise are low as compared to the linear mean square response. For negative values of the non-linear parameter the level of the non-linear mean square response at first increases slowly with increasing values of the non-linear parameter and then suddenly jumps to a high level, at a certain value of the non-linearity parameter.
Resumo:
A higher-order theory of laminated composites under in-plane loads is developed. The displacement field is expanded in terms of the thickness co-ordinate, satisfying the zero shear stress condition at the surfaces of the laminate. Using the principle of virtual displacement, the governing equations and boundary conditions are established. Numerical results for interlaminar stresses arising in the case of symmetric laminates under uniform extension have been obtained and are compared with similar results available in the literature.
Resumo:
A bi-level voltage drive circuit for step motors that can provide the required high starting torque is described. In this circuit, microprocessor 8085 and parallel port interface 8255 are used for generating the code sequence. The inverter buffer 74LS06 provides enough drive to a darlington pair transistor. The comparator LM339 is used to compare the required voltage for step motor with the set value. This circuit can be effectively used for step motors having maximum rated current of less than 15 A with proper heat sink.