71 resultados para Ion Exchange


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regenerable 'gel-coated' cationic resins with fast sorption kinetics and high sorption capacity have application potential for removal of trace metal ions even in large-scale operations. Poly(acrylic acid) has been gel-coated on high-surface area silica (pre-coated with ethylene-vinyl acetate copolymer providing a thin barrier layer) and insolubilized by crosslinking with a low-molecular-weight diepoxide (epoxy equivalent 180 g) in the presence of benzyl dimethylamine catalyst at 70 degrees C, In experiments performed for Ca2+ sorption from dilute aqueous solutions of Ca(NO,),, the gel-coated acrylic resin is found to have nearly 40% higher sorption capacity than the bead-form commercial methacrylic resin Amberlite IRC-50 and also several limes higher rate of sorption. The sorption on the gel-coated sorbent under vigorous agitation has the characteristics of particle diffusion control with homogeneous (gel) diffusion in resin phase. A new mathematical model is proposed for such sorption on gel-coated ion-exchange resin in finite bath and solved by applying operator-theoretic methods. The analytical solution so obtained shows goad agreement with experimental sorption kinetics at relatively low levels (< 70%) of resin conversion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is shown that lithium can be oxidatively extracted from Li2MoO3 at room temperature using Br2 in CHCl3. The delithiated oxides, Li2â��xMoO3 (0 < x â�¤ 1.5) retain the parent ordered rocksalt structure. Complete removal of lithium from Li2MoO3 using Br2 in CH3CN results in a poorly crystalline MoO3 that transforms to the stable structure at 280�°C. Li2MoO3 undergoes topotactic ion-exchange in aqueous H2SO4 to yield a new protonated oxide, H2MoO3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both LiNbWO6 and LiTaWO6 undergo ion exchange in hot aqueous H2SO4 yielding the hydrates HMWO6 · H2O (M = Nb or Ta). The reaction is accompanied by a structural transformation from the rutile to the ReO3 structure. The cell constants are a = 3.783(3)Å for HNbWO6 · H2O and a = 3.785(5)Å for HTaWO6 · H2O. The ReO3 structure is retained by the dehydration products HMWO6 and MWO5.5 as well. HMWO6 phases yield H1+xMWO6 hydrogen bronzes on exposure to hydrogen in the presence of platinum catalyst.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new series of layered perovskite oxides, AILaNb2O7 (A = Li, Na, K, Rb, Cs, NH4) constituting n = 2 members of the family A A′n−1BnO3n+1, has been prepared. Their structure consists of double perovskite slabs interleaved by A atoms. Hydrated HLaNb2O7 is formed by topotactic proton exchange of the A atoms in ALaNb2O7 (A = K, Rb, Cs). The hydrate readily loses water to give anhydrous HLaNb2O7 which is isostructural with RbLaNb2O7. HLaNb2O7 exhibits Bronsted acidity forming intercalation compounds with bases such as n-octylamine and pyridine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New protonated layered oxides, HMWO6·1.5H2O (M=Nb or Ta), have been synthesized by topotactic exchange of lithium in trirutile LiMWO6 with protons by treatment with dilute HNO3. The tetragonal cell constants are a=4.71 (2) and c=25.70 (8)Å for HNbWO6·1.5H2O and a=4.70 (2) and c=25.75 (9) Å for HTaWO6·1.5H2O. Partially hydrated compounds, HMWO6·0.5H2O and anhydrous compounds, HMWO6 retain the layered structure. The structure of these oxides consists of MWO6 sheets built up of M/W-oxygen octahedra with rutile type corner- and edge-sharing. Interlayer protons in HMWO6 are exchanged with Li+, Na+, K+ and Tl+. HMWO6 exhibit Brønsted acidity intercalating n-alkylamines and pyridine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid solutions of the formula, A2–xLa2Ti3–xNbxO10(A = K, Rb), exist for the range 0[less-than-or-eq]x[less-than-or-eq]1.0, bridging n= 3 members of the Ruddlesden–Popper series (A2La2Ti3O10) and the Dion–Jacobson series (ALa2Ti2NbO10). For 0[less-than-or-eq]x[less-than-or-eq]0.75, the phases possess body-centred structures characteristic of the Ruddlesden–Popper phases, while the x= 1 members are isostructural with KCa2Nb3O10(A = K) and CsCa2Nb3O10(A = Rb). Protonated derivatives, H2–xLa2Ti3–xNbxO10, which are prepared by ion exchange, retain the structural difference of the parent phases. A difference in the Brønsted acidity of the protonated derivatives revealed by intercalation experiments with organic bases seems to be related to this structural difference.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anion-deficient layered perovskite oxides of the formula, ACa2Nb3-xMxO10-x (A = Rb, Cs; M = Al, Fe) for 0 < x less-than-or-equal-to 1.0, possessing tetragonal structures similar to the parent ACa2Nb3O10, have been synthesized. The interlayer A cations in these materials are readily exchanged with protons in aqueous HNO3 to give the protonated derivatives, HCa2Nb3-xMxO10-x; the latter are solid Bronsted acids intercalating a number of organic amines including aniline (pK(a) = 4.63). The distribution of acid sites in the interlayer region of HCa2Nb2MO9 inferred from n-alkylamine intercalation suggests that oxygen vacancies and Nb/M atoms are disordered in the ACa2Nb2MO9 samples prepared at 1100-1200-degrees-C. Annealing a disordered sample of CsCa2Nb2AlO9 for a long time at lower temperatures tends to order the Nb/Al atoms and oxygen vacancies to produce octahedral (NbO6/2)-tetrahedral (AlO4/2)-octahedral (NbO6/2) layer sequence reminiscent of the brownmillerite structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polycrystalline samples of oxides of the general formula LiM(V)M(VI)O(6) (M(V) = Nb, Ta; M(VI) = Mo, W), crystallizing in a non-centrosymmetric (space group P (4) over bar 2(1)m) trirutile structure, exhibit second harmonic generation (SHG) of 1064 nm radiation with efficiencies 15-45 times that of alpha-quartz; interestingly, the SHG response is retained by the protonated derivatives HM(V)M(VI)O(6) . xH(2)O, and their n-alkylamine intercalates as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The compositions of the (Mn,Co)O solid solution with rock salt structure in equilibrium with (Mn,Co)Cr2O4 and (Mn,Co)Al2O4 spinel solid solutions have been determined by X-ray diffraction measurements at 1100° C and an oxygen partial pressure of 10–10 atm. The ion exchange equilibria are quantitatively analysed, using values for activities in the (Mn,Co)O solid solution available in the literature, in order to obtain activities in the spinel solid solutions. The MnAl2O4-CoAl2O4 solid solution exhibits negative deviations from Raoult's law, consistent with the estimated cation disorder in the solid solution, while the MnCr2O4-CoCr2O4 solid solution shows slightly positive deviations. The difference in the Gibbs free energy of formation of the two pure chromites and aluminates derived from the results of this study are in good agreement with recent results obtained from solid oxide galvanic cells and gas-equilibrium techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tie lines delineating ion-exchange equilibria between FeCr2O4FeAl2O4 spinel solid solution and Cr2O3Al2O3 solid solution with corundum structure have been determined at 1373 K by electron microprobe and EDAX point count analysis of oxide phases equilibrated with metallic iron. Activities in the spinel solid solution are derived from the tie lines and the thermodynamic data on Cr2O3Al2O3 solid solution available in the literature. The oxygen potentials corresponding to the tie-line composition of oxide phases in equilibrium with metallic iron were measured using solid oxide galvanic cells with CaOZrO2 and Y2O3ThO2 electrolytes. These electrochemical measurements also yield activities in the spinel solid solution, in good agreement with those obtained from tie lines. The activity-composition relationship in the spinel solid solution is analysed in terms of the intra-crystalline ion exchange between the tetrahedral and octahedral sites of the spinel structures. The ion exchange is governed by site-preference energies of the cations and the entropy of cations mixing on each site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a low temperature synthesis of layered Na0×20CoO2 and K0×44CoO2 phases from NaOH and KOH fluxes at 400°C. These layered oxides are employed to prepare hexagonal HCoO2, LixCoO2 and Delafossite AgCoO2 phases by ion exchange method. The resulting oxides were characterised by powder X-ray diffraction, X-ray photoelectron spectroscopy, SEM and EDX analysis. Final compositions of all these oxides are obtained from chemical analysis of elements present. Na0×20CoO2 oxide exhibits insulating to metal like behaviour, whereas AgCoO2 is semiconducting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article highlights different synthetic strategies for the preparation of colloidal heterostructured nanocrystals, where at least one component of the constituent nanostructure is a semiconductor. Growth of shell material on a core nanocrystal acting as a seed for heterogeneous nucleation of the shell has been discussed. This seeded-growth technique, being one of the most heavily explored mechanisms, has already been discussed in many other excellent review articles. However, here our discussion has been focused differently based on composition (semiconductor@semiconductor, magnet@semiconductor, metal@semiconductor and vice versa), shape anisotropy of the shell growth, and synthetic methodology such as one-step vs. multi-step. The relatively less explored strategy of preparing heterostructures via colloidal sintering of different nanostructures, known as nanocrystal-fusion, has been reviewed here. The ion-exchange strategy, which has recently attracted huge research interest, where compositional tuning of nanocrystals can be achieved by exchanging either the cation or anion of a nanocrystal, has also been discussed. Specifically, controlled partial ion exchange has been critically reviewed as a viable synthetic strategy for the fabrication of heterostructures. Notably, we have also included the very recent methodology of utilizing inorganic ligands for the fabrication of heterostructured colloidal nanocrystals. This unique strategy of inorganic ligands has appeared as a new frontier for the synthesis of heterostructures and is reviewed in detail here for the first time. In all these cases, recent developments have been discussed with greater detail to add upon the existing reviews on this broad topic of semiconductor-based colloidal heterostructured nanocrystals.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A porous metalorganic framework, Mn(H3O)(Mn4Cl)(3)(hmtt)(8)] (POST-65), was prepared by the reaction of 5,5',10,10',15,15'-hexamethyltruxene-2,7,12-tricarboxylic acid (H(3)hmtt) with MnCl2 under solvothermal conditions. POST-65(Mn) was subjected to post-synthetic modification with Fe, Co, Ni, and Cu according to an ion-exchange method that resulted in the formation of three isomorphous frameworks, POST-65(Co/Ni/Cu), as well as a new framework, POST-65(Fe). The ion-exchanged samples could not be prepared by regular solvothermal reactions. The complete exchange of the metal ions and retention of the framework structure were verified by inductively coupled plasmaatomic emission spectrometry (ICP-AES), powder X-ray diffraction (PXRD), and BrunauerEmmettTeller (BET) surface-area analysis. Single-crystal X-ray diffractions studies revealed a single-crystal-to-single-crystal (SCSC)-transformation nature of the ion-exchange process. Hydrogen-sorption and magnetization measurements showed metal-specific properties of POST-65.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe how an ion-exchange waveguide was used as a strip-loading region for a planar polymer waveguide. The loading strip forms an underlay that is well preserved in the substrate. Some branching-channel waveguides were formed by this method, and wall losses were measured. The result shows that the wall losses decrease as a result of strip loading.