74 resultados para International Union of Mine, Mill and Smelter Workers
Resumo:
In 1-cyclo-hexyl-6,6,8a-trimethyl-3a,6,7,8a-tetra-hydro-1H-1-benzofuro[2,3-b]pyrrole-2,4(3H,5H)-dione, C19H27NO3, (I), and the isomorphous compounds 6,6,8a-trimethyl-1-phenyl-3a,6,7,8a-tetra-hydro-1H-1-benzofuro[2,3-b]pyrrole-2,4(3H,5H)-dione, C19H21NO3, (II), and 6,6,8a-trimethyl-1-(3-pyridyl)-3a,6,7,8a-tetra-hydro-1H-1-benzofuro[2,3-b]pyrrole-2,4(3H,5H)-dione, C18H20N2O3, (III), the tetra-hydro-benzo-dihydro-furo-pyrrolidine ring systems are folded at the cis junction of the five-membered rings, giving rise to a non-planar shape of the tricyclic cores. The dihydro-furan and pyrrolidine rings in (I) are puckered and adopt an envelope conformation. The cyclo-hexene rings adopt a half-chair conformation in all the mol-ecules, while the substituent N-cyclo-hexyl ring in (I) assumes a chair form. Short intra-molecular C-HcO contacts form S(5) and S(6) motifs. The isomorphous compounds (II) and (III) are effectively isostructural, and aggregate into chains via inter-molecular C-HcO hydrogen bonds.
Resumo:
DL-Proline hemisuccinic acid, C5H9NO2.1/2C4H6O4, M(r) = 174.2, P2(1/c) a = 5.254 (1), b = 17.480 (1), c = 10.230 (i) angstrom, beta = 119.60 (6)-degrees Z = 4, D(m) = 1.41 (4), D(x) = 1.42 g cm-3, R = 0.045 for 973 observed reflections. Glycyl-L-histidinium semisuccinate monohydrate, C8H13N4O3+.C4H5O4-.H2O, M(r) = 348.4, P2(1), a = 4.864 (1), b = 17.071 (2), c = 9.397 (1) angstrom, beta = 90.58-degrees, Z = 2, D(m) = 1.45 (1), D(x) = 1.48 g cm-3, R = 0.027 for 1610 observed reflections. Normal amino-acid and dipeptide aggregation patterns are preserved in the structures in spite of the presence of succinic acid/semisuccinate ions. In both the structures, the amino-acid/dipeptide layers stack in such a way that the succinic acid molecules/semisuccinate ions are enclosed in voids created during stacking. Substantial variability in the ionization state and the stoichiometry is observed in amino-acid and peptide complexes of succinic acid. Succinic acid molecules and succinate ions appear to prefer a planar centro-symmetric conformation with the two carboxyl (carboxylate) groups trans with respect to the central C=C bond. Considerable variation is seen in the departure from and modification of normal amino-acid aggregation patterns produced by the presence of succinic acid. Some of the complexes can be described as inclusion compounds with the amino acid/dipeptide as the 'host' and succinic acid/semisuccinate/succinate as the 'guest'. The effects of change in chirality, though very substantial, are not the same in different pairs of complexes involving DL and L isomers of the same amino acid.
Resumo:
The layered chalcogenides, having structures analogous to graphite, are known to be unstable toward bending and show high propensity to form curved structures, thus eliminating dangling bonds at the edges. Since the discovery of fullerene and nanotube structures of WS2 and MoS2 by Tenne et al. [1-3], there have been attempts to prepare and characterize nanotubes of other layered dichalcogenides with structures analogous to MoS2. Nanotubes of MoS2 and WS2 were prepared by Tenne et al. by reducing the corresponding oxides to the suboxides followed by heating in an atmosphere of forming gas (5 % H-2 + 95 % N-2) and H2S at 700-900 degreesC [1-3]. Alternative methods of synthesis of MoS2 and WS2 nanotubes have since been proposed by employing the decomposition of the ammonium thiometallates or the corresponding trisulfide precursors. This alternative procedure was based on the observation that the trisulfide seems to be formed as an intermediate in the synthesis of the MoS2 and WS2 nanotubes [4]. Accordingly, the decomposition of the trisulfides of MoS2 and W in a reducing atmosphere directly yielded nanotubes of the disulfides MoS2 and WS2 [5]. In this article, we describe the synthesis, structure, and characterization of a few novel nanotubes of the disulfides of groups 4 and 5 metals. These include nanotubes of NbS2, TaS2, ZrS2, and HfS2. The study enlarges the scope of the inorganic nanotubes significantly and promises other interesting possibilities, including the synthesis of the diselenide nanotubes of these metals.
Resumo:
Communication and environmental monitoring play a major role in underground mining both from production and safety point of view. However, underground mining communication as well as monitoring devices encounter several challenges because of the nature of underground features and characteristics. Lack of real time information from underground workings may hamper production and create serious safety risks. Proper communication and monitoring devices are inevitable requirements for better production and improved safety. Communication and environmental monitoring devices are basic element of underground mine infrastructure. This paper describes the performance of communication and monitoring devices being used in underground mines. An attempt has been made to assess the safety risks by these devices which may dictate future research directions.
Resumo:
Jacalin and artocarpin, the two lectins from jackfruit (Artocarpus integrifolia) seeds, have different physicochemical properties and carbohydrate-binding specificities. However, comparison of the partial amino-acid sequence of artocarpin with the known sequence of jacalin indicates close to 50% sequence identity. Artocarpin crystallizes in two forms, both monoclinic P2(1), with one and two tetramic molecules, respectively, in the asymmetric units of form I (a = 69.9, b = 73.7, c = 60.6 Angstrom and beta = 95.1 degrees) and form II (a = 87.6, b = 72.2, c = 92.6 Angstrom and beta = 101.1 degrees). Both the crystal structures have been solved by the molecular replacement method using the known structure of jacalin as the search model and ope of them partially refined, confirming that the two lectins are indeed homologous.
Resumo:
The DL- and L-arginine complexes of oxalic acid are made up of zwitterionic positively charged amino acid molecules and semi-oxalate ions. The dissimilar molecules aggregate into separate alternating layers in the former. The basic unit in the arginine layer is a centrosymmetric dimer, while the semi-oxalate ions form hydrogen-bonded strings in their layer. In the L-arginine complex each semi-oxalate ion is surrounded by arginine molecules and the complex can be described as an inclusion compound. The oxalic acid complexes of basic amino acids exhibit a variety of ionization states and stoichiometry. They illustrate the effect of aggregation and chirality on ionization state and stoichiometry, and that of molecular properties on aggregation. The semi-oxalate/oxalate ions tend to be planar, but large departures from planarity are possible. The amino acid aggregation in the different oxalic acid complexes do not resemble one another significantly, but the aggregation of a particular amino acid in its oxalic acid complex tends to have similarities with its aggregation in other structures. Also, semi-oxalate ions aggregate into similar strings in four of the six oxalic acid complexes. Thus, the intrinsic aggregation propensities of individual molecules tend to be retained in the complexes.
Resumo:
India possesses a diverse and rich cultural heritage and is renowned as a 'land of festivals'. These festivals attract massive community involvement paving way to new materials such as 'Plaster of Paris' being used for 'modernizing' the representation of idols with very little thought given to the issues of toxicity and environmental impacts. Another dimension to the whole issue is the plight of the artisans and the workers involved in the trade. Owing to the unorganized nature of the industry there is minimal or no guidelines pertaining-to the worker safety and health risks of the people involved. This paper attempts to address the complexities of the inherent hazards as a consequence of these socio-environmental issues and trace the scientific rationale in addressing them in a practical and pragmatic way.
Resumo:
M r= 975.9, orthorhombic, Pnna, a = 20.262 (3), b= 15.717 (2), c= 15.038 (1)A, V= 4788.97 A 3, z = 4, D x = 1.35 Mg m -3, Cu Kct radiation, 2 = 1.5418 A, /t = 2.79 mm -1, F(000) -= 2072, T = 293 K, R = 0.08, 3335 observed reflections. The molecular structure and the crystal packing are similar to those observed in the nonactin complexes of sodium thiocyanate and potassium thiocyanate. The eight metal-O distances are nearly the same in the potassium complex whereas the four distances involving carbonyl O atoms are shorter than the remaining four involving the tetrahydrofuran-ring O atoms in the Na and the Ca complexes. This observation can be explained in terms of the small ionic radii of Na + and Ca 2+, and leads to a plausible structural rationale for the stronger affinity of nonactin for K + than for the other two metal ions.
Resumo:
(I): Mr= 168, triclinic, P1, Z=2, a= 5.596 (2), b = 6.938 (3), c = 10.852 (4) A, ~t= 75.64 (3), fl= 93.44 (3), ),= 95.47 (3) °, V= 406.0A 3, Din= 1.35 (by flotation using carbon tetrachloride and n-hexane), D x= 1.374 Mg m -3, g(Mo Kct, 2 = 0.7107 A) = 1.08 cm -l, _F(000) = 180, T= 293 K. (II): Mr= 250, triclinic, P1, Z= 2, a = 7.731(2), b=8.580(2), c=11.033(3)A, a= 97-66 (2), fl= 98.86 (2), y= 101.78 (2) °, V= 697.5 A 3, D m = 1.18 (by flotation using KI solution), Dx= 1.190Mgm -3, g(MoKa, 2=0.7107A)= 1.02 cm -1, F(000) = 272, T= 293 K. Both structures were solved by direct methods and refined to R = 4.4% for 901 reflexions for (I) and 5.7% for 2001 reflexions for (II). The C=C bond distances are 1.451 (3) A in (I) and 1.468 (3)A in (II), quite significantly longer than the C=C bond in ethylene [1.336 (2).~; Bartell, Roth, Hollowell, Kuchitsu & Young (1965). J. Chem. Phys. 42, 2683-2686]. The twist angle about the C=C bond in (II) is 72.9 (5) ° but molecule (I) is essentially planar, the twist angle being only 4.9 (5) ° .
Resumo:
M r = 188.22, monoclinic, P21/n, a = 6.219 (2), b= 10.508 (2), c=7.339 (1)A, t= 107.64 (2) °, V= 457 ,/k 3, Z = 2, D m - - 1.360 (3), D x = 1.366 (2)Mgm -3, ~,(MoKa) = 0.7107/~, #= 0.053 mm -I, F(000) = 200, T= 293 K. Final R = 5.8% for 614 significant reflections. The molecule, which does not possess a centre of symmetry, occupies a crystallographic centre of symmetry because of the statistical enantiomeric and rotational disorder. Latticeenergy calculations, based on van der Waals attractive and repulsive potentials, clearly show minima at the observed disordered positions.
Resumo:
The crystal structures of (1) L-arginine D-asparate, C6HIsN40~.C4H6NO4 [triclinic, P1, a=5.239(1), b=9.544(1), c=14.064(2)A, a=85"58(1), /3=88.73 (1), ~/=84.35 (1) °, Z=2] and (2) L-arginine D-glutamate trihydrate, C6H15N40~-.CsHsNO4.3H20 [monoclinic, P2~, a=9.968(2), b=4.652(1), c=19.930 (2) A, fl = 101.20 (1) °, Z = 2] have been determined using direct methods. They have been refined to R =0.042 and 0.048 for 2829 and 2035 unique reflections respectively [I>2cr(I)]. The conformations of the two arginine molecules in the aspartate complex are different from those observed so far in the crystal structures of arginine, its salts and complexes. In both complexes, the molecules are organized into double layers stacked along the longest axis. The core of each double layer consists of two parallel sheets made up of main-chain atoms, each involving both types of molecules. The hydrogen bonds within each sheet and those that interconnect the two sheets give rise to EL-, DD- and DE-type head-to-tail sequences. Adjacent double layers in (1) are held together by side-chain-side-chain interactions whereas those in (2) are interconnected through an extensive network of water molecules which interact with sidechain guanidyl and carboxylate groups. The aggregation pattern observed in the two LD complexes is fundamentally different from that found in the corresponding EL complexes.
Resumo:
O-Acetylsalicylamide (Ia), C9H9NO3, M r =179.18, monoclinic, P2Jc, a=8.155(5), b=8.571 (2), c= 13.092 (3)A, fl=99.54 (5) ° , V= 902.4(6)A 3, Z=4, Dm=l.31, Dx=l.319gcm -3, 2(Mo Ka) = 0.71069 A,/~ = 1.08 cm -1, F(000) = 376, T = 295 K, R = 0.076 for 1604 reflections. O-Benzoylsalicylamide (Ib), C14HtlNO 3, M,=241.2, monoclinic, P2t/e, a=9.423(1), b=5.116(1), e= 26.424 (2) A, fl= 103.97 (1)% V= 1236.2 (3)/~3, Z= 4, D~ = 1.28, D x = 1.296 gcm -3, ,;L(Cu Ks) = 1.5418 A, p = 7.71 cm-', F(000) = 504, T= 295 K, R =0.050 for 2115 reflections. The dihedral angles between the amide group and the benzene ring are 39.9 ° (Ia) and 37.9 ° (Ib), whereas between the acyl group and the benzene ring they are 78.1 ° (Ia) and 93.4 ° (Ib). The differences in the packing of the two structures are brought out in terms of the observed hydrogen-bonding patterns. Based on the crystallographic results, an intramolecular mechanism for the migration of the acyl group from the O to the N position is suggested in both compounds.