31 resultados para Information Technologies Classification


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we present an information filtering agent called sharable instructable information filtering agent (SIIFA). It adopted the approach of sharable instructable agents. SIIFA provides comprehensible and flexible interaction to represent and filter the documents. The representation scheme in SIIFA is personalized. It, either fully or partly, can be shared among the users of the stream while not revealing their interests and can be easily edited. SIIFA is evaluated on the comp.ai.neural-nets Usent newsgroup documents and compared with the vector space method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, a new technique is presented to increase the bandwidth for a single stage amplifier. Usually, -3 dB bandwidth of single stage amplifier is in few MHz. High output impedance and subsequent capacitive loading decrease the bandwidth of amplifier. The presented technique uses a load which itself acts as bandwidth enhancer. This high speed amplifier is designed on 180 nm CMOS technology, operates at 2.5 V power supply. This amplifier is succeeded by an output buffer to achieve a better linearity, high output swing and required output impedance for matching.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a Chance-constraint Programming approach for constructing maximum-margin classifiers which are robust to interval-valued uncertainty in training examples. The methodology ensures that uncertain examples are classified correctly with high probability by employing chance-constraints. The main contribution of the paper is to pose the resultant optimization problem as a Second Order Cone Program by using large deviation inequalities, due to Bernstein. Apart from support and mean of the uncertain examples these Bernstein based relaxations make no further assumptions on the underlying uncertainty. Classifiers built using the proposed approach are less conservative, yield higher margins and hence are expected to generalize better than existing methods. Experimental results on synthetic and real-world datasets show that the proposed classifiers are better equipped to handle interval-valued uncertainty than state-of-the-art.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Production scheduling in a flexible manufacturing system (FMS) is a real-time combinatorial optimization problem that has been proved to be NP-complete. Solving this problem needs on-line monitoring of plan execution and requires real-time decision-making in selecting alternative routings, assigning required resources, and rescheduling when failures occur in the system. Expert systems provide a natural framework for solving this kind of NP-complete problems.In this paper an expert system with a novel parallel heuristic approach is implemented for automatic short-term dynamic scheduling of FMS. The principal features of the expert system presented in this paper include easy rescheduling, on-line plan execution, load balancing, an on-line garbage collection process, and the use of advanced knowledge representational schemes. Its effectiveness is demonstrated with two examples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Land cover (LC) changes play a major role in global as well as at regional scale patterns of the climate and biogeochemistry of the Earth system. LC information presents critical insights in understanding of Earth surface phenomena, particularly useful when obtained synoptically from remote sensing data. However, for developing countries and those with large geographical extent, regular LC mapping is prohibitive with data from commercial sensors (high cost factor) of limited spatial coverage (low temporal resolution and band swath). In this context, free MODIS data with good spectro-temporal resolution meet the purpose. LC mapping from these data has continuously evolved with advances in classification algorithms. This paper presents a comparative study of two robust data mining techniques, the multilayer perceptron (MLP) and decision tree (DT) on different products of MODIS data corresponding to Kolar district, Karnataka, India. The MODIS classified images when compared at three different spatial scales (at district level, taluk level and pixel level) shows that MLP based classification on minimum noise fraction components on MODIS 36 bands provide the most accurate LC mapping with 86% accuracy, while DT on MODIS 36 bands principal components leads to less accurate classification (69%).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Remote sensing provides a lucid and effective means for crop coverage identification. Crop coverage identification is a very important technique, as it provides vital information on the type and extent of crop cultivated in a particular area. This information has immense potential in the planning for further cultivation activities and for optimal usage of the available fertile land. As the frontiers of space technology advance, the knowledge derived from the satellite data has also grown in sophistication. Further, image classification forms the core of the solution to the crop coverage identification problem. No single classifier can prove to satisfactorily classify all the basic crop cover mapping problems of a cultivated region. We present in this paper the experimental results of multiple classification techniques for the problem of crop cover mapping of a cultivated region. A detailed comparison of the algorithms inspired by social behaviour of insects and conventional statistical method for crop classification is presented in this paper. These include the Maximum Likelihood Classifier (MLC), Particle Swarm Optimisation (PSO) and Ant Colony Optimisation (ACO) techniques. The high resolution satellite image has been used for the experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper aims at evaluating the methods of multiclass support vector machines (SVMs) for effective use in distance relay coordination. Also, it describes a strategy of supportive systems to aid the conventional protection philosophy in combating situations where protection systems have maloperated and/or information is missing and provide selective and secure coordinations. SVMs have considerable potential as zone classifiers of distance relay coordination. This typically requires a multiclass SVM classifier to effectively analyze/build the underlying concept between reach of different zones and the apparent impedance trajectory during fault. Several methods have been proposed for multiclass classification where typically several binary SVM classifiers are combined together. Some authors have extended binary SVM classification to one-step single optimization operation considering all classes at once. In this paper, one-step multiclass classification, one-against-all, and one-against-one multiclass methods are compared for their performance with respect to accuracy, number of iterations, number of support vectors, training, and testing time. The performance analysis of these three methods is presented on three data sets belonging to training and testing patterns of three supportive systems for a region and part of a network, which is an equivalent 526-bus system of the practical Indian Western grid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies the problem of constructing robust classifiers when the training is plagued with uncertainty. The problem is posed as a Chance-Constrained Program (CCP) which ensures that the uncertain data points are classified correctly with high probability. Unfortunately such a CCP turns out to be intractable. The key novelty is in employing Bernstein bounding schemes to relax the CCP as a convex second order cone program whose solution is guaranteed to satisfy the probabilistic constraint. Prior to this work, only the Chebyshev based relaxations were exploited in learning algorithms. Bernstein bounds employ richer partial information and hence can be far less conservative than Chebyshev bounds. Due to this efficient modeling of uncertainty, the resulting classifiers achieve higher classification margins and hence better generalization. Methodologies for classifying uncertain test data points and error measures for evaluating classifiers robust to uncertain data are discussed. Experimental results on synthetic and real-world datasets show that the proposed classifiers are better equipped to handle data uncertainty and outperform state-of-the-art in many cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our ability to infer the protein quaternary structure automatically from atom and lattice information is inadequate, especially for weak complexes, and heteromeric quaternary structures. Several approaches exist, but they have limited performance. Here, we present a new scheme to infer protein quaternary structure from lattice and protein information, with all-around coverage for strong, weak and very weak affinity homomeric and heteromeric complexes. The scheme combines naive Bayes classifier and point group symmetry under Boolean framework to detect quaternary structures in crystal lattice. It consistently produces >= 90% coverage across diverse benchmarking data sets, including a notably superior 95% coverage for recognition heteromeric complexes, compared with 53% on the same data set by current state-of-the-art method. The detailed study of a limited number of prediction-failed cases offers interesting insights into the intriguing nature of protein contacts in lattice. The findings have implications for accurate inference of quaternary states of proteins, especially weak affinity complexes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we show that it is possible to reduce the complexity of Intra MB coding in H.264/AVC based on a novel chance constrained classifier. Using the pairs of simple mean-variances values, our technique is able to reduce the complexity of Intra MB coding process with a negligible loss in PSNR. We present an alternate approach to address the classification problem which is equivalent to machine learning. Implementation results show that the proposed method reduces encoding time to about 20% of the reference implementation with average loss of 0.05 dB in PSNR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part classification and coding is still considered as laborious and time-consuming exercise. Keeping in view, the crucial role, which it plays, in developing automated CAPP systems, the attempts have been made in this article to automate a few elements of this exercise using a shape analysis model. In this study, a 24-vector directional template is contemplated to represent the feature elements of the parts (candidate and prototype). Various transformation processes such as deformation, straightening, bypassing, insertion and deletion are embedded in the proposed simulated annealing (SA)-like hybrid algorithm to match the candidate part with their prototype. For a candidate part, searching its matching prototype from the information data is computationally expensive and requires large search space. However, the proposed SA-like hybrid algorithm for solving the part classification problem considerably minimizes the search space and ensures early convergence of the solution. The application of the proposed approach is illustrated by an example part. The proposed approach is applied for the classification of 100 candidate parts and their prototypes to demonstrate the effectiveness of the algorithm. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growing concern over the status of global and regional bioenergy resources has necessitated the analysis and monitoring of land cover and land use parameters on spatial and temporal scales. The knowledge of land cover and land use is very important in understanding natural resources utilization, conversion and management. Land cover, land use intensity and land use diversity are land quality indicators for sustainable land management. Optimal management of resources aids in maintaining the ecosystem balance and thereby ensures the sustainable development of a region. Thus sustainable development of a region requires a synoptic ecosystem approach in the management of natural resources that relates to the dynamics of natural variability and the effects of human intervention on key indicators of biodiversity and productivity. Spatial and temporal tools such as remote sensing (RS), geographic information system (GIS) and global positioning system (GPS) provide spatial and attribute data at regular intervals with functionalities of a decision support system aid in visualisation, querying, analysis, etc., which would aid in sustainable management of natural resources. Remote sensing data and GIS technologies play an important role in spatially evaluating bioresource availability and demand. This paper explores various land cover and land use techniques that could be used for bioresources monitoring considering the spatial data of Kolar district, Karnataka state, India. Slope and distance based vegetation indices are computed for qualitative and quantitative assessment of land cover using remote spectral measurements. Differentscale mapping of land use pattern in Kolar district is done using supervised classification approaches. Slope based vegetation indices show area under vegetation range from 47.65 % to 49.05% while distance based vegetation indices shoes its range from 40.40% to 47.41%. Land use analyses using maximum likelihood classifier indicate that 46.69% is agricultural land, 42.33% is wasteland (barren land), 4.62% is built up, 3.07% of plantation, 2.77% natural forest and 0.53% water bodies. The comparative analysis of various classifiers, indicate that the Gaussian maximum likelihood classifier has least errors. The computation of talukwise bioresource status shows that Chikballapur Taluk has better availability of resources compared to other taluks in the district.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid urbanisation in India has posed serious challenges to the decision makers in regional planning involving plethora of issues including provision of basic amenities (like electricity, water, sanitation, transport, etc.). Urban planning entails an understanding of landscape and urban dynamics with causal factors. Identifying, delineating and mapping landscapes on temporal scale provide an opportunity to monitor the changes, which is important for natural resource management and sustainable planning activities. Multi-source, multi-sensor, multi-temporal, multi-frequency or multi-polarization remote sensing data with efficient classification algorithms and pattern recognition techniques aid in capturing these dynamics. This paper analyses the landscape dynamics of Greater Bangalore by: (i) characterisation of direct impervious surface, (ii) computation of forest fragmentation indices and (iii) modeling to quantify and categorise urban changes. Linear unmixing is used for solving the mixed pixel problem of coarse resolution super spectral MODIS data for impervious surface characterisation. Fragmentation indices were used to classify forests – interior, perforated, edge, transitional, patch and undetermined. Based on this, urban growth model was developed to determine the type of urban growth – Infill, Expansion and Outlying growth. This helped in visualising urban growth poles and consequence of earlier policy decisions that can help in evolving strategies for effective land use policies.