137 resultados para Infinite integral
Diffraction Of Elastic Waves By Two Parallel Rigid Strips Embedded In An Infinite Orthotropic Medium
Resumo:
The elastodynamic response of a pair of parallel rigid strips embedded in an infinite orthotropic medium due to elastic waves incident normally on the strips has been investigated. The mixed boundary value problem has been solved by the Integral Equation method. The normal stress and the vertical displacement have been derived in closed form. Numerical values of stress intensity factors at inner and outer edges of the strips and vertical displacement at points in the plane of the strips for several orthotropic materials have been calculated and plotted graphically to show the effect of material orthotropy.
Resumo:
Numerical analysis of cracked structures often involves numerical estimation of stress intensity factors (SIFs) at a crack tip/front. A newly developed formulation called universal crack closure integral (UCCI) for the evaluation of potential energy release rates (PERRs) and the corresponding SIFs is presented in this paper. Unlike the existing element dedicated forms of crack closure integrals (MCCI, VCCI) with application limited to finite element analysis, this new numerical SIF/PERR estimation technique is independent of the basic stress analysis procedure, making it universally applicable. The second merit of this procedure is that it avoids the generally error-producing zones close to the crack tip/front singularity. The UCCI procedure, based on Irwin's original CCI, is formulated and explored using a simple 2D problem of a straight crack in an infinite sheet. It is then applied to some three-dimensional crack geometries with the stresses and displacements obtained from a boundary element program.
Resumo:
The nonlinear singular integral equation of transonic flow is examined, noting that standard numerical techniques are not applicable in solving it. The difficulties in approximating the integral term in this expression were solved by special methods mitigating the inaccuracies caused by standard approximations. It was shown how the infinite domain of integration can be reduced to a finite one; numerical results were plotted demonstrating that the methods proposed here improve accuracy and computational economy.
Resumo:
The partial thermodynamic functions of the solvent component of a ternary system have been deduced in terms of the interaction parameters by integration of several series which emerge from the Maclaurin infinite series based on the integral property of the system and subjected to appropriate boundary conditions. The series integration shows that the resulting partial functions are suitable for interpreting the thermodynamic properties of the system and are independent of compositional paths. In the present analysis, the higher order terms of these series are found to make insignificant contributions.
Resumo:
This paper presents an approximate three-dimensional elasticity solution for an infinitely long, cross-ply laminated circular cylindrical shell panel with simply supported boundary conditions, subjected to an arbitrary discontinuous transverse loading. The solution is based on the principal assumption that the ratio of the thickness of the lamina to its middle surface radius is negligible compared to unity. The validity of this assumption and the range of application of this approximate solution have been established through a comparison with an exact solution. Results of classical and first-order shear deformation shell theories have been compared with the results of the present solution to bring out the accuracy of these theories. It is also shown that for very shallow shell panels the definition of a thin shell should be based on the ratio of thickness to chord width rather than the ratio of thickness to mean radius.
Resumo:
Numerical solutions of flow and heat transfer process on the unsteady flow of a compressible viscous fluid with variable gas properties in the vicinity of the stagnation line of an infinite swept cylinder are presented. Results are given for the case where the unsteady temperature field is produced by (i) a sudden change in the wall temperature (enthalpy) as the impulsive motion is started and (ii) a sudden change in the free-stream velocity. Solutions for the simultaneous development of the thermal and momentum boundary layers are obtained by using quasilinearization technique with an implicit finite difference scheme. Attention is given to the transient phenomenon from the initial flow to the final steady-state distribution. Results are presented for the skin friction and heat transfer coefficients as well as for the velocity and enthalpy profiles. The effects of wail enthalpy parameter, sweep parameter, fluid properties and transpiration cooling on the heat transfer and skin friction are considered.
Resumo:
Compulsators are power sources of choice for use in electromagnetic launchers and railguns. These devices hold the promise of reducing unit costs of payload to orbit. In an earlier work, the author had calculated the current distribution in compulsator wires by considering the wire to be split into a finite number of separate wires. The present work develops an integral formulation of the problem of current distribution in compulsator wires which leads to an integrodifferential equation. Analytical solutions, including those for the integration constants, are obtained in closed form. The analytical solutions present a much clearer picture of the effect of various input parameters on the cross-sectional current distribution and point to ways in which the desired current density distribution can be achieved. Results are graphically presented and discussed, with particular reference to a 50-kJ compulsator in Bangalore. Finite-element analysis supports the results.
Resumo:
A method is presented for obtaining useful closed form solution of a system of generalized Abel integral equations by using the ideas of fractional integral operators and their applications. This system appears in solving certain mixed boundary value problems arising in the classical theory of elasticity.
Resumo:
We apply the method of multiple scales (MMS) to a well known model of regenerative cutting vibrations in the large delay regime. By ``large'' we mean the delay is much larger than the time scale of typical cutting tool oscillations. The MMS upto second order for such systems has been developed recently, and is applied here to study tool dynamics in the large delay regime. The second order analysis is found to be much more accurate than first order analysis. Numerical integration of the MMS slow flow is much faster than for the original equation, yet shows excellent accuracy. The main advantage of the present analysis is that infinite dimensional dynamics is retained in the slow flow, while the more usual center manifold reduction gives a planar phase space. Lower-dimensional dynamical features, such as Hopf bifurcations and families of periodic solutions, are also captured by the MMS. Finally, the strong sensitivity of the dynamics to small changes in parameter values is seen clearly.
Resumo:
In this article, a non-autonomous (time-varying) semilinear system is considered and its approximate controllability is investigated. The notion of 'bounded integral contractor', introduced by Altman, has been exploited to obtain sufficient conditions for approximate controllability. This condition is weaker than Lipschitz condition. The main theorems of Naito [11, 12] are obtained as corollaries of our main results. An example is also given to show how our results weaken the conditions assumed by Sukavanam[17].
Resumo:
This paper presents the proper computational approach for the estimation of strain energy release rates by modified crack closure integral (MCCI). In particular, in the estimation of consistent nodal force vectors used in the MCCI expressions for quarter-point singular elements (wherein all the nodal force vectors participate in computation of strain energy release rates by MCCI). The numerical example of a centre crack tension specimen under uniform loading is presented to illustrate the approach.
Resumo:
A direct method of solution is presented for singular integral equations of the first kind, involving the combination of a logarithmic and a Cauchy type singularity. Two typical cages are considered, in one of which the range of integration is a Single finite interval and, in the other, the range of integration is a union of disjoint finite intervals. More such general equations associated with a finite number (greater than two) of finite, disjoint, intervals can also be handled by the technique employed here.
Resumo:
Some properties of the eigenvalues of the integral operator Kgt defined as Kτf(x) = ∫0τK(x − y) f (y) dy were studied by [1.], 554–566), with some assumptions on the kernel K(x). In this paper the eigenfunctions of the operator Kτ are shown to be continuous functions of τ under certain circumstances. Also, the results of Vittal Rao and the continuity of eigenfunctions are shown to hold for a larger class of kernels.