17 resultados para Induced Systemic Resistance


Relevância:

30.00% 30.00%

Publicador:

Resumo:

D.C. electrical conductivity of polyaniline (33%,40%) blended with PMMA was measured from 5K to 300mK. The conductivity behaviour is consistent with fluctuation induced tunneling. Magneto-resistance (MR) was measured between 300K and 2K. From 20K to 2K, a large positive MR was observed. At 2K, for low magnetic fields (<1 Tesla), a deviation from the normal H-2 behaviour was observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Broad-spectrum antibiotics with heterocyclic side chains strongly inhibit peroxidase-catalyzed iodination in the presence of metallo--lactamase. This suggests that antibiotic resistance due to hydrolysis of the -lactam ring in antibiotics would have negative effects on thyroid activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The results of extensive transport studies in localized regime of mesoscopic two-dimensional electron systems (2DES) with varying disorder are presented. A quick overview of previously achieved result is given. The main focus is on the observation of density dependent instabilities manifested by strong resistance oscillations induced by high perpendicular magnetic fields B-perpendicular to. While the amplitude of the oscillations is strongly enhanced with increasing B-perpendicular to, their position in electron density remains unaffected. The temperature dependence of resistivity shows a transition from an activated behaviour at high temperature to a saturated behaviour at low T. In the positions of resistance minima, the T dependence can even become metal-like (d rho/dT > 0). The activation energies obtained from the high T behaviour exhibit a formation of plateaux in connection with the resistance oscillations when analyzed as a function of electron density. We suggest the interplay between a strongly interacting electron phase and the background disorder as a possible explanation for our observation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To study the effect of hydrostatic pressure on the incommensurate lattice modulation at 153 K in K3Cu8S6, electrical resistivity measurements are done at 1.0 GPa, 1.5 GPa and 2.2 GPa. The sharp increase in resistance at 2.2 GPa is attributed to the incommensurate to commensurate transition. This is further confirmed by the non-linear I–V characteristics at 2.2 GPa showing the driven motion of the commensurate charge density wave in the presence of an external electric field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mycobacterium tuberculosis utilizes unique strategies to survive amid the hostile environment of infected host cells. Infection-specific expression of a unique mycobacterial cell surface antigen that could modulate key signaling cascades can act as a key survival strategy in curtailing host effector responses like oxidative stress. We demonstrate here that hypothetical PE_PGRS11 ORF encodes a functional phosphoglycerate mutase. The transcriptional analysis revealed that PE_PGRS11 is a hypoxia-responsive gene, and enforced expression of PE_PGRS11 by recombinant adenovirus or Mycobacterium smegmatis imparted resistance to alveolar epithelial cells against oxidative stress. PE_PGRS11-induced resistance to oxidative stress necessitated the modulation of genetic signatures like induced expression of Bcl2 or COX-2. This modulation of specific antiapoptotic molecular signatures involved recognition of PE_PGRS11 by TLR2 and subsequent activation of the PI3K-ERK1/ 2-NF-kappa B signaling axis. Furthermore, PE_PGRS11 markedly diminished H2O2-induced p38 MAPK activation. Interestingly, PE_PGRS11 protein was exposed at the mycobacterial cell surface and was involved in survival of mycobacteria under oxidative stress. Furthermore, PE_PGRS11 displayed differential B cell responses during tuberculosis infection. Taken together, our investigation identified PE_PGRS11 as an in vivo expressed immunodominant antigen that plays a crucial role in modulating cellular life span restrictions imposed during oxidative stress by triggering TLR2-dependent expression of COX-2 and Bcl2. These observations clearly provide a mechanistic basis for the rescue of pathogenic Mycobacterium-infected lung epithelial cells from oxidative stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subcutaneous administration of the LD50 dose of methyl isocyanate (MIC) to rats induced severe hyperglycaemia, lactic acidosis and uraemia in rats. Neither methylamine (MA) nor N,N′-dimethylurea (DMU), the hydrolysis products of MIC, administered in equimolar doses had any influence on these parameters except for a marginal transient increase in plasma urea by DMU. Methyl isocyanate administration led to haemoconcentration, resulting in an increase in the plasma concentration of total proteins and a decrease in both the plasma concentration of albumin and the plasma cholinesterase activity. The hydrolysis products of MIC had no influence on any of these parameters. Thus, it seems reasonable to suggest that the systemic effects of MIC are caused by MIC per se, in spite of its high hydrolytic instability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The higher levels of cytochrone P-450 dependent enzyme activities reported earlier are traced to higher levels of cytochrome P-450 (CYPIIB1/B2 like) messenger RNA in the chloroquine resistant than the sensitive strains. The messenger RNA is also induced by phenobarbitone in the sensitive strain. Pretreatment with phenobarbitone affords partial protection to chloroquine toxicity in the sensitive strain and this is not due to a differential accumulation of the drug.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and purpose of the study: Herbal enhancers compared to the synthetic ones have shown less toxis effects. Coumarins have been shown at concentrations inhibiting phospoliphase C-Y (Phc-Y) are able to enhance tight junction (TJ) permeability due to hyperpoalation of Zonolous Occludense-1 (ZO-1) proteins. The purpose of this study was to evaluate the influence of ethanolic extract of Angelica archengelica (AA-E) which contain coumarin on permeation of repaglinide across rat epidermis and on the tight junction plaque protein ZO-1 in HaCaT cells. Methods: Transepidermal water loss (TEWL) from the rat skin treated with different concentrations of AA-E was assessed by Tewameter. Scanning and Transmission Electron Microscopy (TEM) on were performed on AA-E treated rat skin portions. The possibility of AA-E influence on the architecture of tight junctions by adverse effect on the cytoplasmic ZO-1 in HaCaT cells was investigated. Finally, the systemic delivery of repaglinide from the optimized transdermal formulation was investigated in rats. Results: The permeation of repaglinide across excised rat epidermis was 7-fold higher in the presence of AA-E (5% w/v) as compared to propylene glycol:ethanol (7:3) mixture. The extract was found to perturb the lipid microconstituents in both excised and viable rat skin, although, the effect was less intense in the later. The enhanced permeation of repaglinide across rat epidermis excised after treatment with AA-E (5% w/v) for different periods was in concordance with the high TEWL values of similarly treated viable rat skin. Further, the observed increase in intercellular space, disordering of lipid structure and corneocyte detachment indicated considerable effect on the ultrastructure of rat epidermis. Treatment of HaCaT cell line with AA-E (0.16% w/v) for 6 hrs influenced ZO-1 as evidenced by reduced immunofluorescence of anti-TJP1 (ZO-1) antibody in Confocal Laser Scanning Microscopy studies (CLSM) studies. The plasma concentration of repaglinide from transdermal formulation was maintained higher and for longer time as compared to oral administration of repaglinide. Major conclusion: Results suggest the overwhelming influence of Angelica archengelica in enhancing the percutaneous permeation of repaglinide to be mediated through perturbation of skin lipids and tight junction protein (ZO-1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cobalt and iron nanoparticles are doped in carbon nanotube (CNT)/polymer matrix composites and studied for strain and magnetic field sensing properties. Characterization of these samples is done for various volume fractions of each constituent (Co and Fe nanoparticles and CNTs) and also for cases when only either of the metallic components is present. The relation between the magnetic field and polarization-induced strain are exploited. The electronic bandgap change in the CNTs is obtained by a simplified tight-binding formulation in terms of strain and magnetic field. A nonlinear constitutive model of glassy polymer is employed to account for (1) electric bias field dependent softening/hardening (2) CNT orientations as a statistical ensemble and (3) CNT volume fraction. An effective medium theory is then employed where the CNTs and nanoparticles are treated as inclusions. The intensity of the applied magnetic field is read indirectly as the change in resistance of the sample. Very small magnetic fields can be detected using this technique since the resistance is highly sensitive to strain. Its sensitivity due to the CNT volume fraction is also discussed. The advantage of this sensor lies in the fact that it can be molded into desirable shape and can be used in fabrication of embedded sensors where the material can detect external magnetic fields on its own. Besides, the stress-controlled hysteresis of the sample can be used in designing memory devices. These composites have potential for use in magnetic encoders, which are made of a magnetic field sensor and a barcode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abrin, a type II ribosome-inactivating protein, comprises A and B subunits wherein the A subunit harbours toxin activity and the B subunit has a galactose-specific lectin activity. The entry of the protein inside the cell is through the binding of the B chain to cell surface glycoproteins followed by receptor-mediated endocytosis and retrograde transport. A previous study from our laboratory showed that different cell lines exhibited differences of as great as similar to 200-fold in abrin toxicity, prompting the present study to compare the trafficking of the toxin within cells. Observations made in this regard revealed that the abrin A chain, after being released into the cytosol, is sequestered into the nucleus through interaction with a cellular protein of similar to 25 kDa, BASP1 (brain acid-soluble protein 1). The nuclear localization of the A chain is seen predominantly in cells that are less sensitive to abrin toxicity and dependent on the levels of BASP1 in cells. The sequestration by BASP1 renders cells increasingly resistant to the inhibition of protein synthesis by abrin and the nucleus act as a sink to overcome cellular stress induced

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the existing issues in implant failure of orthopedic biomaterials is the toxicity induced by the fine particles released during long term use in vivo, leading to acute inflammatory response. In developing a new class of piezobiocomposite to mimic the integrated electrical and mechanical properties of bone, bone-mimicking physical properties as well as in vitro cytocompatibility properties have been achieved with spark plasma sintered hydroxyapatite (HA)-barium titanate (BaTiO3) composites. However, the presence of BaTiO3 remains a concern towards the potential toxicity effect. To address this issue, present work reports the first result to conclusively confirm the non-toxic effect of HA-BaTiO3 piezobiocomposite nanoparticulates, in vivo. Twenty BALB/c mice were intraarticularly injected at their right knee joints with different concentrations of HA-BaTiO3 composite of up to 25 mg/ml. The histopathological examination confirmed the absence of any trace of injected particles or any sign of inflammatory reaction in the vital organs, such as heart, spleen, kidney and liver at 7 days post-exposure period. Rather, the injected nanoparticulates were found to be agglomerated in the vicinity of the knee joint, surrounded by macrophages. Importantly, the absence of any systemic toxicity response in any of the vital organs in the treated mouse model, other than a mild local response at the site of delivery, was recorded. The serum biochemical analyses using proinflammatory cytokines (TNF-alpha and IL-1 beta) also complimented to the non-immunogenic response to injected particulates. Altogether, the absence of any inflammatory/ adverse reaction will open up myriad of opportunities for BaTiO3 based piezoelectric implantable devices in biomedical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Saccharomyces cerevisiae Sub1 is involved in several cellular processes such as, transcription initiation, elongation, mRNA processing and DNA repair. It has also been reported to provide cellular resistance during conditions of oxidative DNA damage and osmotic stress. Here, we report a novel role of SUB1 during starvation stress-induced sporulation, which leads to meiosis and spore formation in diploid yeast cells. Deletion of SUB1 gene significantly increased sporulation efficiency as compared to the wild-type cells in S288c genetic background. Whereas, the sporulation functions of the sub1(Y66A) missense mutant were similar to Sub1. SUB1 transcript and protein levels are downregulated during sporulation, in highly synchronized and sporulation proficient wild-type SK1 cells. The changes in Sub1 levels during sporulation cascade correlate with the induction of middle sporulation gene expression. Deletion of SUB1 increased middle sporulation gene transcript levels with no effect on their induction kinetics. In wild-type cells, Sub1 associates with chromatin at these loci in a temporal pattern that correlates with their enhanced gene expression seen in sub1. cells. We show that SUB1 genetically interacts with HOS2, which led us to speculate that Sub1 might function with Set3 repressor complex during sporulation. Positive Cofactor 4, human homolog of Sub1, complemented the sub1. sporulation phenotype, suggesting conservation of function. Taken together, our results suggest that SUB1 acts as a negative regulator of sporulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low temperature Raman spectroscopic measurements on silver nitroprusside (AgNP), Ag-2Fe(CN)(5)NO] powders display reversible features of a partially converted metastable state. The results are compared with similarly observed metastable state in case of sodium nitroprusside (NaNP) and the differences have been discussed in terms of possible resistance to metastable state formation offered by silver atoms on the basis of hard soft acid base (HSAB) theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite being highly bioactive and biocompatible, the limitations of monolithic hydroxyapatite (HA) include extremely low fracture toughness, poor electrical conductivity. While addressing these issues, the present study demonstrates how CaTiO3 (CT) addition to HA can be utilized to obtain a combination of long crack fracture toughness (1.7 MPa m(1/2) SEVNB technique) and flexural strength of 98-155 MPa (3-point bending) and a moderate tensile strength (diametral compression) of 17-36 MPa. The enhancement in fracture resistance in spark plasma sintered HA-CT composites has been explained in reference to the observed twin morphology. TEM reveals the presence of twins in CT grains due to 1800 rotation about 101]. The measured properties along with our earlier reports on biocompatibility and electrical properties make HA-CT suitable for bone tissue engineering applications. When compared with other competing HA-based biocomposites, HA-CT composites are found to have a better combination of properties useful for medium load bearing implant applications. (C) 2015 Elsevier Ltd. All rights reserved.