41 resultados para Improvement Plan
Resumo:
Electric power systems are exposed to various contingencies. Network contingencies often contribute to over-loading of network branches, unsatisfactory voltages and also leading to problems of stability/voltage collapse. To maintain security of the systems, it is desirable to estimate the effect of contingencies and plan suitable measures to improve system security/stability. This paper presents an approach for selection of unified power flow controller (UPFC) suitable locations considering normal and network contingencies after evaluating the degree of severity of the contingencies. The ranking is evaluated using composite criteria based fuzzy logic for eliminating masking effect. The fuzzy approach, in addition to real power loadings and bus voltage violations, voltage stability indices at the load buses also used as the post-contingent quantities to evaluate the network contingency ranking. The selection of UPFC suitable locations uses the criteria on the basis of improved system security/stability. The proposed approach for selection of UPFC suitable locations has been tested under simulated conditions on a few power systems and the results for a 24-node real-life equivalent EHV power network and 39-node New England (modified) test system are presented for illustration purposes.
Resumo:
Brooks' Theorem says that if for a graph G,Δ(G)=n, then G is n-colourable, unless (1) n=2 and G has an odd cycle as a component, or (2) n>2 and Kn+1 is a component of G. In this paper we prove that if a graph G has none of some three graphs (K1,3;K5−e and H) as an induced subgraph and if Δ(G)greater-or-equal, slanted6 and d(G)<Δ(G), then χ(G)<Δ(G). Also we give examples to show that the hypothesis Δ(G)greater-or-equal, slanted6 can not be non-trivially relaxed and the graph K5−e can not be removed from the hypothesis. Moreover, for a graph G with none of K1,3;K5−e and H as an induced subgraph, we verify Borodin and Kostochka's conjecture that if for a graph G,Δ(G)greater-or-equal, slanted9 and d(G)<Δ(G), then χ(G)<Δ(G).
Resumo:
The spreadability of SAE-30 oil on Al-12 Si base (LM-13) alloy containing dispersed graphite particles about 50 μm average size in its matrix is found to be greater than on either LM-13 with no graphite or brass. It is also found that the spreadability on LM-13 base alloys increase with increasing volume of graphite dispersion in the matrix of these alloys. Further increases in the spreadability of oil on machined LM-13-graphite particle composite test surfaces occur if these are rubbed initially against control discs of either LM-13 or grey cast iron. The formation of a triboinduced graphite-rich layer, confirmed by esca, appears to be responsible for the improved oil spreadability on the rubbed test surfaces of LM-13 base alloys as compared to the as-machined test surfaces prior to rubbing. The triboinduced layer of graphite is apparently responsible for the observed reduction in the friction, wear and seizing tendency of triboelements made from aluminium alloy-graphite particle composites.
Resumo:
Various intrusion detection systems (IDSs) reported in the literature have shown distinct preferences for detecting a certain class of attack with improved accuracy, while performing moderately on the other classes. In view of the enormous computing power available in the present-day processors, deploying multiple IDSs in the same network to obtain best-of-breed solutions has been attempted earlier. The paper presented here addresses the problem of optimizing the performance of IDSs using sensor fusion with multiple sensors. The trade-off between the detection rate and false alarms with multiple sensors is highlighted. It is illustrated that the performance of the detector is better when the fusion threshold is determined according to the Chebyshev inequality. In the proposed data-dependent decision ( DD) fusion method, the performance optimization of ndividual IDSs is first addressed. A neural network supervised learner has been designed to determine the weights of individual IDSs depending on their reliability in detecting a certain attack. The final stage of this DD fusion architecture is a sensor fusion unit which does the weighted aggregation in order to make an appropriate decision. This paper theoretically models the fusion of IDSs for the purpose of demonstrating the improvement in performance, supplemented with the empirical evaluation.
Resumo:
It is well known that the use of a series of resistors, connected between the equipotential rings of a Van de Graaff generator, improves the axial voltage grading of the generator. The work reported in this paper shows how the resistor chain also improves the radial voltage gradient. The electrolytic field mapping technique was adopted in the present work.
Resumo:
In this paper an attempt is made to study accurately, the field distribution for various types of porcelain/ceramic insulators used forhigh voltage transmission. The surface charge Simulation method is employed for the field computation. Novel field reduction electrodes are developed to reduce the maximum field around the pin region. In order to experimentally scrutinize the performance of discs with field reduction electrodes, special artificial pollution test facility was built and utilized. The experimental results show better improvement in the pollution flashover performance of string insulators.
Resumo:
Pt2+ ion dispersed in CeO2, Ce1-xTixO2-delta and TiO2 have been tested for preferential oxidation of carbon monoxide (PROX) in hydrogen rich stream. It is found that Pt2+ substituted CeO2 and Ce(1-x)TixO(2-delta) in the form of solid solution Ce0.98Pt0.02O2-delta and Ce0.83Ti0.15Pt0.02O2-delta are highly CO selective low temperature PROX catalysts in hydrogen rich stream. Just 15% of Ti substitution in CeO2 improves the overall PROX activity.
Resumo:
Modifications made in a solar air collector inlet duct to achieve uniform velocity of air in the absorber duct are described. Measurements of temperature and pressure at various points in the duct gave information on the distribution of air in the absorber duct. A thermal performance test conducted on the collector with a vaned diffuser showed some significant improvement compared with a diffuser without vanes.
Resumo:
Improved performance of plasma in raw engine exhaust treatment is reported. A new type of reactor referred to as of cross-flow dielectric barrier discharge (DBD) was used, in which the gas flow is perpendicular to the corona electrode. In raw exhaust environment, the cross-flow (radial-flow) reactor exhibits a superior performance with regard to NOX removal when compared to that with axial flow of gas. Experiments were conducted at different flow rates ranging from 2 L/min to 25 L/min. The plasma assisted barrier discharge reactor has shown encouraging results in NOx removal at high flow rates.
Resumo:
The amount of reactive power margin available in a system determines its proximity to voltage instability under normal and emergency conditions. More the reactive power margin, better is the systems security and vice-versa. A hypothetical way of improving the reactive margin of a synchronous generator is to reduce the real power generation within its mega volt-ampere (MVA) ratings. This real power generation reduction will affect its power contract agreements entered in the electricity market. Owing to this, the benefit that the generator foregoes will have to be compensated by paying them some lost opportunity cost. The objective of this study is three fold. Firstly, the reactive power margins of the generators are evaluated. Secondly, they are improved using a reactive power optimization technique and optimally placed unified power flow controllers. Thirdly, the reactive power capacity exchanges along the tie-lines are evaluated under base case and improved conditions. A detailed analysis of all the reactive power sources and sinks scattered throughout the network is carried out in the study. Studies are carried out on a real life, three zone, 72-bus equivalent Indian southern grid considering normal and contingency conditions with base case operating point and optimised results presented.
Resumo:
This paper investigates the diversity-multiplexing gain tradeoff (DMT) of a time-division duplex (TDD) single-input multiple-output (SIMO) system with perfect channel state information (CSI) at the receiver (CSIR) and partial CSI at the transmitter (CSIT). The partial CSIT is acquired through a training sequence from the receiver to the transmitter. The training sequence is chosen in an intelligent manner based on the CSIR, to reduce the training length by a factor of r, the number of receive antennas. We show that, for the proposed training scheme and a given channel coherence time, the diversity order increases linearly with r for nonzero multiplexing gain. This is a significant improvement over conventional orthogonal training schemes.
Resumo:
The ability of Static Var Compensators (SVCs) to rapidly and continuously control reactive power in response to changing system conditions can result in the improvement of system stability and also increase the power transfer in the transmission system. This paper concerns the application of strategically located SVCs to enhance the transient stability limits and the direct evaluation of the effect of these SVCs on transient stability using a Structure Preserving Energy Function (SPEF). The SVC control system can be modelled from the steady- state control characteristic to accurately simulate its effect on transient stability. Treating the SVC as a voltage-dependent reactive power load leads to the derivation of a path-independent SPEF for the SVC. Case studies on a 10-machine test system using multiple SVCs illustrate the effects of SVCs on transient stability and its accurate prediction.
Resumo:
This paper is devoted to the improvement in the range of operation (linearity range) of chimney weir (consisting of a rectangular weir or vertical slot over an inward trapezium), A new and more elegant optimization procedure is developed to analyse the discharge-head relationship in the weir. It is shown that a rectangular weir placed over an inverted V-notch of depth 0.90d gives the maximum operating range, where d is the overall depth of the inward trapezoidal weir (from the crest to the vertex). For all flows in the rectangular portion, the discharge is proportional to the linear power of the head, h, measured above a reference plane located at 0.292d below the weir crest, in the range 0.90d less than or equal to h less than or equal to 7.474: within a maximum error of +/-1.5% from the theoretical discharge. The optimum range of operation of the newly designed weir is 200% greater than that in the chimney weir designed by Keshava Murthy and Giridhar, and is nearly 950% greater than that in the inverted V-notch. Experiments with two weirs having half crest widths of 0.10 and 0.12 m yield a constant average coefficient of discharge of 0.634 and confirm the theory. The application of the weir in the design of rectangular grit chamber outlet is emphasized, in that the datum for the linear discharge-head relationship is below the crest level of the weir.