30 resultados para Immunosuppressive drugs


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pre-requisite for the elucidation of the mechanism of action of aspirin-like drugs, which are believed to exert their pharmacological effects through the inhibition of prostaglandin biosynthesis, is an understanding of their molecular geometry, the non-covalent interactions they are likely to be involved in, and the geometrical and the electronic consequences of such interactions. This has been sought to be achieved through the x-ray analysis of these drug molecules and their crystalline complexes with other suitable molecules. The results obtained from such studies have been discussed in terms of specific typical examples. For instance, antipyrine can form metal and hydrogen-bonded complexes; phenylbutazone can form ionic complexes with basic molecules. Complex formation is accompanied by characteristic changes in the molecular geometry and the electronic structure in both the cases. The results obtained so far appear to indicate that the important common invariant structural features of the fenamates, deduced from crystal structures, are retained even when complexation takes place.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New antiretroviral drugs that offer large genetic barriers to resistance, such as the recently approved inhibitors of HIV-1 protease, tipranavir and darunavir, present promising weapons to avert the failure of current therapies for HIV infection. Optimal treatment strategies with the new drugs, however, are yet to be established. A key limitation is the poor understanding of the process by which HIV surmounts large genetic barriers to resistance. Extant models of HIV dynamics are predicated on the predominance of deterministic forces underlying the emergence of resistant genomes. In contrast, stochastic forces may dominate, especially when the genetic barrier is large, and delay the emergence of resistant genomes. We develop a mathematical model of HIV dynamics under the influence of an antiretroviral drug to predict the waiting time for the emergence of genomes that carry the requisite mutations to overcome the genetic barrier of the drug. We apply our model to describe the development of resistance to tipranavir in in vitro serial passage experiments. Model predictions of the times of emergence of different mutant genomes with increasing resistance to tipranavir are in quantitative agreement with experiments, indicating that our model captures the dynamics of the development of resistance to antiretroviral drugs accurately. Further, model predictions provide insights into the influence of underlying evolutionary processes such as recombination on the development of resistance, and suggest guidelines for drug design: drugs that offer large genetic barriers to resistance with resistance sites tightly localized on the viral genome and exhibiting positive epistatic interactions maximally inhibit the emergence of resistant genomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of phenobarbital on the rates of the synthesis of the protein and heme moieties of cytochrome P-450 has been studied. For this purpose, cytochrome P-450 has been partially purified as its P-420 derivative and the labeled amino acid incorporation into the protein has been studied after subjecting a partially purified preparation to sodium dodecyl sulfate gel electrophoresis. The incorporation studies into the protein species after sodium dodecyl sulfate gel electrophoresis reveal that the drug primarily accelerates the rate of apoprotein synthesis followed by an increase in the rate of heme synthesis. The messenger for apocytochrome P-450 appears to be fairly stable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of copper-thiosemicarbazide complexes with DNA was investigated using ultraviolet and infrared spectroscopy. Evidence for the interaction of the complexes with nucleic acid bases and with the phosphate group is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accurate experimental determination of the solubilities of antibiotics and anti-inflammatory drugs in supercritical fluids (SCFs) and correlations are essential for the development of supercritical technologies for the pharmaceuticals industry. In this work, the solubilities of penicillinG, penicillinV, flurbiprofen, ketoprofen, naproxen, ibuprofen, aspirin and diflunisal in supercritical carbon dioxide (SCCO2) were correlated using Peng-Robinson equation of state (PR EOS) with the modified Kwak and Mansoori mixing rules (mKM) and with Bartle model. The ability of mKM rules was compared against the conventional mixing rules of van der Waals in correlating the solubilities. In the present model, vapor pressure was considered as an adjustable parameter along with binary interactions parameters. In the proposed model, the constants used in the mixing rule, and vapor pressure expression coefficients are temperature independent. The optimization of these constants with experimental data gives binary interaction parameters along with vapor pressure correlations. Sublimation enthalpies were estimated with both the models compared with literature reported experimental values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The keto-enol type tautomerism in anti-thyroid drugs and their selenium analogues are described. The commonly used anti-thyroid drug methimazole exists predominantly in its thione form, whereas its selenium analogue exists in a zwitterionic form. To understand the effect of thione/thiol and selone/selenol tautomerism on the inhibition of peroxidase-catalysed reactions, we have synthesized some thiones and selones in which the formation of thiol/selenol forms are blocked by different substituents. These compounds were synthesized by a carbene route utilizing an imidazolium salt. The crystal structures of these compounds reveal that the C=Se bonds in the selones are more polarized than the C=S bonds in the corresponding thiones. The structures of selones were studied in solution by NMR spectroscopy and the 77Se NMR chemical shifts for the selones show large upfield shifts in the signals, confirming their zwitterionic structures in solution. The inhibition of lactoperoxidase by the synthetic thiones indicates that the presence of a free N-H moiety is essential for an efficient inhibition. In contrast, such moiety is not required for an inhibition by the selenium compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the effect of some commonly used antithyroid drugs and their analogues on peroxynitrite-mediated nitration of proteins is described. The nitration of tyrosine residues in bovine serum albumin (BSA) and cytochromec was studied by Western blot analysis. These studies reveal that the antithyroid drugs methimazole (MMI), 6-n-propyl-2-thiouracil (PTU), and 6-methyl-2-thiouracil (MTU), which contain thione moieties, significantly reduce the tyrosine nitration of both BSA and cytochrome c. While MMI exhibits good peroxynitrite (PN) scavenging activity, the thiouracil compounds PTU and MTU are slightly less effective than MMI. The S- and Se-methylated compounds show a weak inhibitory effect in the nitration of tyrosine, indicating that the presence of a thione or selone moiety is important for an efficient inhibition. Similarly, the replacement of N-H moiety in MMI by N-methyl or N-m-methoxybenzyl substituents dramatically reduces the antioxidant activity of the parent compound. Theoretical studies indicate that the substitution of N-H moiety by N-Me significantly increases the energy required for the oxidation of sulfur center by PN. However, such substitution in the selenium analogue of MMI increases the activity of parent compound. This is due to the facile oxidation of the selone moiety to the corresponding selenenic and seleninic acids. Unlike N,N'-disubstituted thiones, the corresponding selones efficiently scavenge PN, as they predominantly exist in their zwitterionic forms in which the selenium atom carries a large negative charge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report presents evidence for the interactions of several classes of cationic amphiphilic drugs including the phenothiazines, aminoquinolines, biguanides, and aromatic diamidines, with lipid A, the endotoxic principle of lipopolysaccharides. The interactions of the drugs were quantitatively assessed by fluorescence methods. The affinities of the drugs for lipid A parallel their endotoxin-antagonistic effects in the Limulus gelation assay. Dicationic compounds bind lipid A with greater affinity; the affinity of such molecules increases exponentially as a function of the distance between the basic moieties. The bis-amidine drug - pentamidine - examined in greater detail, binds lipid A with high affinity (apparent K-d: 0.12 mu M), and LPS, probably due to simultaneous interactions of the terminal amidine groups with the anionic phosphates on lipid A. The sequestration of endotoxin by pentamidine reduces its propensity to bind to cells, and the complex exhibits attenuated toxicity in biological assays. These results have implications in the development of therapeutic strategies against endotoxin-related disease states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we describe the effect of some commonly used thiourea-based antithyroid drugs and their analogues on the peroxidase-catalyzed nitration reactions. The nitration of bovine serum albumin (BSA) and cytochrome c was studied using the antibody against 3-nitro-L-tyrosine. This study reveals that the thione-based antithyroid drugs effectively inhibit lactoperoxidase (LPO)-catalyzed nitration of BSA. These compounds show very weak inhibition towards the nitration of cytochrome c. Some of these compounds also inhibit myeloperoxidase (MPO)-catalyzed nitration of L-tyrosine. A structure-activity correlation study on the peroxidase-catalyzed nitration of L-tyrosine reveals that the presence of thione/selone moiety is important for the inhibition. Although the presence of a free N-H group adjacent to C=S moiety is necessary for most of the thiones to inhibit the LPO-catalyzed nitration, the corresponding selones do not require the presence of any free N-H group for their activity. Furthermore, experiments with different concentrations of H2O2 suggest that the antithyroid drugs and related thiones inhibit the nitration reaction mainly by coordinating to the Fe(III)-center of the enzyme active site as previously proposed for the inhibition of peroxidase-catalyzed iodination. On the other hand, the selenium compounds inhibit the nitration by scavenging H2O2 without interacting with the enzyme active site. This assumption is based on the observations that catalase effectively inhibits tyrosine nitration by scavenging H2O2, which is one of the substrates for the nitration. In contrast, superoxide dismutase (SOD) does not alter the nitration reactions, indicating the absence of superoxide radical anion (O-2 center dot(-)) during the peroxidase-catalyzed nitration reactions. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly (methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO3 particles followed by core removal with ethylene-diaminetetraacetic add (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The selenium analogue of antithyroid drug methimazole (MSeI) reacts with molecular bromine to produce two different types of novel complexes depending upon the molar ratio of MSeI to Br-2 in the reaction medium: Dicationic diselenide complex with two Br- ions as counterions is produced in the reaction of MSeI with 0.5 equiv of Br-2 (MSeI/Br-2, 1.0:0.5), whereas a stable 10-Se-3 hypervalent ``T-shaped'' complex featuring a linear Br-Se-Br moiety was produced when MSeI was treated with Br-2 in an equimolar ratio (MSeI/Br-2, 1.0:1.0). A substitution at the free N-H group in MSeI alters its reactivity toward iodine/bromine. For example, the N,N-disubstituted selones exclusively produce the corresponding 10-Se-3 hypervalent ``T-shaped'' complexes in the reaction with I-2. In the presence of the lectoperoxidase/H2O2/I- system, N,N-dimethylimidazole-2-selone produces the corresponding dicationic diselenide with two I- counterions as the final metabolite. The formation of ionic species in these reactions is confirmed by single crystal X-ray diffraction studies and in some cases by Fourier transform-Raman spectroscopic investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel composite graphene oxide (GO)/poly(allylamine hydrochloride) (PAH) multilayer capsules have been fabricated by layer-by-layer (LbL) assembly. They were found to possess unique permeability properties compared to traditional LbL capsules. These hybrid capsules showed special ``core-shell'' loading property for encapsulation of dual drugs simultaneously into the core and shell of the capsules respectively.