61 resultados para High-Dimensional Space Geometrical Informatics (HDSGI)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a low-complexity algorithm for detection in high-rate, non-orthogonal space-time block coded (STBC) large-multiple-input multiple-output (MIMO) systems that achieve high spectral efficiencies of the order of tens of bps/Hz. We also present a training-based iterative detection/channel estimation scheme for such large STBC MIMO systems. Our simulation results show that excellent bit error rate and nearness-to-capacity performance are achieved by the proposed multistage likelihood ascent search (M-LAS) detector in conjunction with the proposed iterative detection/channel estimation scheme at low complexities. The fact that we could show such good results for large STBCs like 16 X 16 and 32 X 32 STBCs from Cyclic Division Algebras (CDA) operating at spectral efficiencies in excess of 20 bps/Hz (even after accounting for the overheads meant for pilot based training for channel estimation and turbo coding) establishes the effectiveness of the proposed detector and channel estimator. We decode perfect codes of large dimensions using the proposed detector. With the feasibility of such a low-complexity detection/channel estimation scheme, large-MIMO systems with tens of antennas operating at several tens of bps/Hz spectral efficiencies can become practical, enabling interesting high data rate wireless applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large MIMO systems with tens of antennas in each communication terminal using full-rate non-orthogonal space-time block codes (STBC) from Cyclic Division Algebras (CDA) can achieve the benefits of both transmit diversity as well as high spectral efficiencies. Maximum-likelihood (ML) or near-ML decoding of these large-sized STBCs at low complexities, however, has been a challenge. In this paper, we establish that near-ML decoding of these large STBCs is possible at practically affordable low complexities. We show that the likelihood ascent search (LAS) detector, reported earlier by us for V-BLAST, is able to achieve near-ML uncoded BER performance in decoding a 32x32 STBC from CDA, which employs 32 transmit antennas and sends 32(2) = 1024 complex data symbols in 32 time slots in one STBC matrix (i.e., 32 data symbols sent per channel use). In terms of coded BER, with a 16x16 STBC, rate-3/4 turbo code and 4-QAM (i.e., 24 bps/Hz), the LAS detector performs close to within just about 4 dB from the theoretical MIMO capacity. Our results further show that, with LAS detection, information lossless (ILL) STBCs perform almost as good as full-diversity ILL (FD-ILL) STBCs. Such low-complexity detectors can potentially enable implementation of high spectral efficiency large MIMO systems that could be considered in wireless standards.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Emerging high-dimensional data mining applications needs to find interesting clusters embeded in arbitrarily aligned subspaces of lower dimensionality. It is difficult to cluster high-dimensional data objects, when they are sparse and skewed. Updations are quite common in dynamic databases and they are usually processed in batch mode. In very large dynamic databases, it is necessary to perform incremental cluster analysis only to the updations. We present a incremental clustering algorithm for subspace clustering in very high dimensions, which handles both insertion and deletions of datapoints to the backend databases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An operator-splitting finite element method for solving high-dimensional parabolic equations is presented. The stability and the error estimates are derived for the proposed numerical scheme. Furthermore, two variants of fully-practical operator-splitting finite element algorithms based on the quadrature points and the nodal points, respectively, are presented. Both the quadrature and the nodal point based operator-splitting algorithms are validated using a three-dimensional (3D) test problem. The numerical results obtained with the full 3D computations and the operator-split 2D + 1D computations are found to be in a good agreement with the analytical solution. Further, the optimal order of convergence is obtained in both variants of the operator-splitting algorithms. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article addresses the problem of determining the shortest path that connects a given initial configuration (position, heading angle, and flight path angle) to a given rectilinear or a circular path in three-dimensional space for a constant speed and turn-rate constrained aerial vehicle. The final path is assumed to be located relatively far from the starting point. Due to its simplicity and low computational requirements the algorithm can be implemented on a fixed-wing type unmanned air vehicle in real time in missions where the final path may change dynamically. As wind has a very significant effect on the flight of small aerial vehicles, the method of optimal path planning is extended to meet the same objective in the presence of wind comparable to the speed of the aerial vehicles. But, if the path to be followed is closer to the initial point, an off-line method based on multiple shooting, in combination with a direct transcription technique, is used to obtain the optimal solution. Optimal paths are generated for a variety of cases to show the efficiency of the algorithm. Simulations are presented to demonstrate tracking results using a 6-degrees-of-freedom model of an unmanned air vehicle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When document corpus is very large, we often need to reduce the number of features. But it is not possible to apply conventional Non-negative Matrix Factorization(NMF) on billion by million matrix as the matrix may not fit in memory. Here we present novel Online NMF algorithm. Using Online NMF, we reduced original high-dimensional space to low-dimensional space. Then we cluster all the documents in reduced dimension using k-means algorithm. We experimentally show that by processing small subsets of documents we will be able to achieve good performance. The method proposed outperforms existing algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the problem of determining an optimal (shortest) path in three dimensional space for a constant speed and turn-rate constrained aerial vehicle, that would enable the vehicle to converge to a rectilinear path, starting from any arbitrary initial position and orientation. Based on 3D geometry, we propose an optimal and also a suboptimal path planning approach. Unlike the existing numerical methods which are computationally intensive, this optimal geometrical method generates an optimal solution in lesser time. The suboptimal solution approach is comparatively more efficient and gives a solution that is very close to the optimal one. Due to its simplicity and low computational requirements this approach can be implemented on an aerial vehicle with constrained turn radius to reach a straight line with a prescribed orientation as required in several applications. But, if the distance between the initial point and the straight line to be followed along the vertical axis is high, then the generated path may not be flyable for an aerial vehicle with limited range of flight path angle and we resort to a numerical method for obtaining the optimal solution. The numerical method used here for simulation is based on multiple shooting and is found to be comparatively more efficient than other methods for solving such two point boundary value problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a methodology for identifying best features from a large feature space. In high dimensional feature space nearest neighbor search is meaningless. In this feature space we see quality and performance issue with nearest neighbor search. Many data mining algorithms use nearest neighbor search. So instead of doing nearest neighbor search using all the features we need to select relevant features. We propose feature selection using Non-negative Matrix Factorization(NMF) and its application to nearest neighbor search. Recent clustering algorithm based on Locally Consistent Concept Factorization(LCCF) shows better quality of document clustering by using local geometrical and discriminating structure of the data. By using our feature selection method we have shown further improvement of performance in the clustering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A k-dimensional box is the cartesian product R-1 x R-2 x ... x R-k where each R-i is a closed interval on the real line. The boxicity of a graph G,denoted as box(G), is the minimum integer k such that G is the intersection graph of a collection of k-dimensional boxes. A unit cube in k-dimensional space or a k-cube is defined as the cartesian product R-1 x R-2 x ... x R-k where each Ri is a closed interval on the real line of the form [a(i), a(i) + 1]. The cubicity of G, denoted as cub(G), is the minimum k such that G is the intersection graph of a collection of k-cubes. In this paper we show that cub(G) <= t + inverted right perpendicularlog(n - t)inverted left perpendicular - 1 and box(G) <= left perpendiculart/2right perpendicular + 1, where t is the cardinality of a minimum vertex cover of G and n is the number of vertices of G. We also show the tightness of these upper bounds. F.S. Roberts in his pioneering paper on boxicity and cubicity had shown that for a graph G, box(G) <= left perpendicularn/2right perpendicular and cub(G) <= inverted right perpendicular2n/3inverted left perpendicular, where n is the number of vertices of G, and these bounds are tight. We show that if G is a bipartite graph then box(G) <= inverted right perpendicularn/4inverted left perpendicular and this bound is tight. We also show that if G is a bipartite graph then cub(G) <= n/2 + inverted right perpendicularlog n inverted left perpendicular - 1. We point out that there exist graphs of very high boxicity but with very low chromatic number. For example there exist bipartite (i.e., 2 colorable) graphs with boxicity equal to n/4. Interestingly, if boxicity is very close to n/2, then chromatic number also has to be very high. In particular, we show that if box(G) = n/2 - s, s >= 0, then chi (G) >= n/2s+2, where chi (G) is the chromatic number of G.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anisotropic Gaussian Schell-model (AGSM) fields and their transformation by first-order optical systems (FOS’s) forming Sp(4,R) are studied using the generalized pencils of rays. The fact that Sp(4,R), rather than the larger group SL(4,R), is the relevant group is emphasized. A convenient geometrical picture wherein AGSM fields and FOS’s are represented, respectively, by antisymmetric second-rank tensors and de Sitter transformations in a (3+2)-dimensional space is developed. These fields are shown to separate into two qualitatively different families of orbits and the invariants over each orbit, two in number, are worked out. We also develop another geometrical picture in a (2+1)-dimensional Minkowski space suitable for the description of the action of axially symmetric FOS’s on AGSM fields, and the invariants, now seven in number, are derived. Interesting limiting cases forming coherent and quasihomogeneous fields are analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental characterization of high dimensional dynamic systems sometimes uses the proper orthogonal decomposition (POD). If there are many measurement locations and relatively fewer sensors, then steady-state behavior can still be studied by sequentially taking several sets of simultaneous measurements. The number required of such sets of measurements can be minimized if we solve a combinatorial optimization problem. We aim to bring this problem to the attention of engineering audiences, summarize some known mathematical results about this problem, and present a heuristic (suboptimal) calculation that gives reasonable, if not stellar, results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the bound states of two spin-1/2 fermions interacting via a contact attraction (characterized by a scattering length) in the singlet channel in three-dimensional space in presence of a uniform non-Abelian gauge field. The configuration of the gauge field that generates a Rashba-type spin-orbit interaction is described by three coupling parameters (lambda(x),lambda(y),lambda(z)). For a generic gauge field configuration, the critical scattering length required for the formation of a bound state is negative, i.e., shifts to the ``BCS side'' of the resonance. Interestingly, we find that there are special high-symmetry configurations (e.g., lambda(x) = lambda(y) = lambda(z)) for which there is a two-body bound state for any scattering length however small and negative. Remarkably, the bound-state wave functions obtained for such configurations have nematic spin structure similar to those found in liquid He-3. Our results show that the BCS-BEC (Bose-Einstein condensation) crossover is drastically affected by the presence of a non-Abelian gauge field. We discuss possible experimental signatures of our findings both at high and low temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given a parametrized n-dimensional SQL query template and a choice of query optimizer, a plan diagram is a color-coded pictorial enumeration of the execution plan choices of the optimizer over the query parameter space. These diagrams have proved to be a powerful metaphor for the analysis and redesign of modern optimizers, and are gaining currency in diverse industrial and academic institutions. However, their utility is adversely impacted by the impractically large computational overheads incurred when standard brute-force exhaustive approaches are used for producing fine-grained diagrams on high-dimensional query templates. In this paper, we investigate strategies for efficiently producing close approximations to complex plan diagrams. Our techniques are customized to the features available in the optimizer's API, ranging from the generic optimizers that provide only the optimal plan for a query, to those that also support costing of sub-optimal plans and enumerating rank-ordered lists of plans. The techniques collectively feature both random and grid sampling, as well as inference techniques based on nearest-neighbor classifiers, parametric query optimization and plan cost monotonicity. Extensive experimentation with a representative set of TPC-H and TPC-DS-based query templates on industrial-strength optimizers indicates that our techniques are capable of delivering 90% accurate diagrams while incurring less than 15% of the computational overheads of the exhaustive approach. In fact, for full-featured optimizers, we can guarantee zero error with less than 10% overheads. These approximation techniques have been implemented in the publicly available Picasso optimizer visualization tool.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Applications in various domains often lead to very large and frequently high-dimensional data. Successful algorithms must avoid the curse of dimensionality but at the same time should be computationally efficient. Finding useful patterns in large datasets has attracted considerable interest recently. The primary goal of the paper is to implement an efficient Hybrid Tree based clustering method based on CF-Tree and KD-Tree, and combine the clustering methods with KNN-Classification. The implementation of the algorithm involves many issues like good accuracy, less space and less time. We will evaluate the time and space efficiency, data input order sensitivity, and clustering quality through several experiments.