351 resultados para Heat -- Transmission
Resumo:
We address a physics-based solution of joule heating phenomenon in a single-layer graphene (SLG) sheet under the presence of Thomson effect. We demonstrate that the temperature in an isotopically pure (containing only C-12) SLG sheet attains its saturation level quicker than when doped with its isotopes (C-13). From the solution of the joule heating equation, we find that the thermal time constant of the SLG sheet is in the order of tenths of a nanosecond for SLG dimensions of a few micrometers. These results have been formulated using the electron interactions with the inplane and flexural phonons to demonstrate a field-dependent Landauer transmission coefficient. We further develop an analytical model of the SLG specific heat using the quadratic (out of plane) phonon band structure over the room temperature. Additionally, we show that a cooling effect in the SLG sheet can be substantially enhanced with the addition of C-13. The methodologies as discussed in this paper can be put forward to analyze the graphene heat spreader theory.
Resumo:
Enteric protozoan Entamoeba histolytica is a major cause of debilitating diarrheal infection worldwide with high morbidity and mortality. Even though the clinical burden of this parasite is very high, this infection is categorized as a neglected disease. Parasite is transmitted through feco-oral route and exhibit two distinct stages namely - trophozoites and cysts. Mechanism and regulation of encystation is not clearly understood. Previous studies have established the role of Heat shock protein 90 (Hsp90) in regulating stage transition in various protozoan parasites like Giardia, Plasmodium, Leishmania, and Toxoplasma. Our study for the first time reports that Hsp90 plays a crucial role in life cycle of Entamoeba as well. We identify Hsp90 to be a negative regulator of encystation in Entamoeba. We also show that Hsp90 inhibition interferes with the process of phagocytosis in Entamoeba. Overall, we show that Hsp90 plays an important role in virulence and transmission of Entamoeba.
Resumo:
Parameterization of sensible heat and momentum fluxes as inferred from an analysis of tower observations archived during MONTBLEX-90 at Jodhpur is proposed, both in terms of standard exchange coefficients C-H and C-D respectively and also according to free convection scaling. Both coefficients increase rapidly at low winds (the latter more strongly) and with increasing instability. All the sensible heat flux data at Jodhpur (wind speed at 10m <(U)over bar (10)>, < 8ms(-1)) also obey free convection scaling, with the flux proportional to the '4/3' power of an appropriate temperature difference such as that between 1 and 30 m. Furthermore, for <(U)over bar (10)> < 4 ms(-1) the momentum flux displays a linear dependence on wind speed.
Resumo:
A study is made on the flow and heat transfer of a viscous fluid confined between two parallel disks. The disks are allowed to rotate with different time dependent angular velocities, and the upper disk is made to approach the lower one with a constant speed. Numerical solutions of the governing parabolic partial differential equations are obtained through a fourth-order accurate compact finite difference scheme. The normal forces and torques that the fluid exerts on the rotating surfaces are obtained at different nondimensional times for different values of the rate of squeezing and disk angular velocities. The temperature distribution and heat transfer are also investigated in the present analysis.
Resumo:
The precipitation processes in dilute nitrogen alloys of titanium have been examined in detail by conventional transmission electron microscopy (CTEM) and high-resolution electron microscopy (HREM). The alloy Ti-2 at. pct N on quenching from its high-temperature beta phase field has been found to undergo early stages of decomposition. The supersaturated solid solution (alpha''-hcp) on decomposition gives rise to an intimately mixed, irresolvable product microstructure. The associated strong tweed contrast presents difficulties in understanding the characteristic features of the process. Therefore, HREM has been carried out with a view to getting a clear picture of the decomposition process. Studies on the quenched samples of the alloy suggest the formation of solute-rich zones of a few atom layers thick, randomly distributed throughout the matrix. On aging, these zones grow to a size beyond which the precipitate/matrix interfaces appear to become incoherent and the alpha' (tetragonal) product phase is seen distinctly. The structural details, the crystallography of the precipitation process, and the sequence of precipitation reaction in the system are illustrated.
Resumo:
The flow and heat transfer problem in the boundary layer induced by a continuous moving surface is important in many manufacturing processes in industry such as the boundary layer along material handling conveyers, the aerodynamic extrusion of plastic sheet, the cooling of an infinite metalic plate in a cooling bath (which may also be electrolyte). Glass blowing, continuous casting and spinning of fibres also involve the flow due to a stretching surface. Sakiadis [1] was the first to study the flow induced by a semi-infinite moving wall in an ambient fluid. On the other hand, Crane [2] first studied the flow over a linearly stretching sheet in an ambient fluid. Subsequently, Crane [3] also investigated the corresponding heat transfer problem. Since then several authors [4-8] have studied various aspects of this problem such as the effects of mass transfer, variable wall temperature, constant heat flux, magnetic field etc. Recently, Andersson [9] has obtained an exact solution of the Navier-Stokes equations for the MHD flow over a linearly stretching sheet in an ambient fluid. Also Chiam [10] has studied the heat transfer with variable thermal conductivity on a stretching sheet when the velocities of the sheet and the free stream are equal.
Resumo:
The entire extracellular domain of the human heat-stable enterotoxin (ST) receptor as well as a truncated N-terminal domain were cloned as glutathione S-transferase fusion proteins and expressed in Escherichia coli. The recombinant fusion proteins were purified from both the cytosol and the inclusion body fractions by selective detergent extraction followed by glutathione-agarose affinity chromatography. The purified protein, corresponding to the entire extracellular domain, bound the stable toxin peptide with an affinity comparable to that of the native receptor characterized from the human colonic T84 cell line. No binding was observed with the N-terminal truncated fragment of the receptor under similar conditions, Polyclonal antibodies were raised to the entire extracellular domain fusion protein as well as the truncated extracellular domain fusion protein, and the antibodies were purified by affinity chromatography. Addition of the purified antibodies to T84 cells inhibited ST binding and abolished ST-mediated cGMP production, indicating that critical epitopes involved in ligand interaction are present in the N-terminal fragment of the receptor, Purified antibodies recognized a single protein of M(r) 160,000 Da on Western blotting with T84 membranes, corresponding to a size of the native glycosylated receptor in T84 cells. These studies are the first report of the expression, purification, and characterization of any member of the guanylyl cyclase family of receptors in E. coli and show that binding of the toxin to the extracellular domain of the receptor is possible in the absence of any posttranslational modifications such as glycosylation. The recombinant fusion proteins as well as the antibodies that we have generated could serve as useful tools in the identification of critical residues of the extracellular domain involved in ligand interaction.
Resumo:
Japanese encephalitis virus (JEV) envelope (E) protein has been shown to play a critical role in attachment to cells. However, the receptor interacting with envelope protein has not been conclusively identified. Using mouse neuroblastoma (Neuro2a) cells and purified JEV-E protein in `Virus Overlay Protein Binding Assay' followed by MALDI-TOF analysis, we identified `heat shock protein 70' (Hsp70) as a possible receptor for JEV. Indirect immunofluorescence and flow-cytometry analysis demonstrated localization of Hsp70 on Neuro2a cell surface. Co-immunoprecipitation followed by Western blot analysis reconfirmed the interaction between Hsp70 and JEV-E protein. Further, anti-Hsp70 polyclonal-antibodies were able to block JEV entry into Neuro2a cells. Additionally, using the bioinformatic tool - FTDOCK, clocking between the proteins was performed. Amongst six interacting structural poses studied one pose involving RGD motif on JEV-E and leucine(539) on Hsp70 displayed stable interaction. These observations indicate that Hsp70 serves as putative receptor for JEV in Neuro2A cells.
Resumo:
Nanoscale deformation in the tribolayer of an Al–Mg alloy is studied using an in situ mechanical probe in a transmission electron microscope. The sample is strained locally at room temperature and the deformation is observed in real time. It is observed that when the tungsten probe comes into contact with the tribolayer, the material exhibits further hardening followed by material removal.
Resumo:
The unsteady magnetohydrodynamic viscous flow and heat transfer of Newtonian fluids induced by an impulsively stretched plane surface in two lateral directions are studied by using an analytic technique, namely, the homotopy method. The analytic series solution presented here is highly accurate and uniformly valid for all time in the entire region. The effects of the stretching ratio and the magnetic field on the surface shear stresses and heat transfer are studied. The surface shear stresses in x- and y-directions and the surface heat transfer are enchanced by increasing stretching ratio for a fixed value of the magnetic parameter. For a fixed stretching ratio, the surface shear stresses increase with the magnetic parameter, but the heat transfer decreases. The Nusselt number takes longer time to reach the steady state than the skin friction coefficients. There is a smooth transition from the initial unsteady state to the steady state.
Resumo:
Turbulent mixed convection flow and heat transfer in a shallow enclosure with and without partitions and with a series of block-like heat generating components is studied numerically for a range of Reynolds and Grashof numbers with a time-dependent formulation. The flow and temperature distributions are taken to be two-dimensional. Regions with the same velocity and temperature distributions can be identified assuming repeated placement of the blocks and fluid entry and exit openings at regular distances, neglecting the end wall effects. One half of such module is chosen as the computational domain taking into account the symmetry about the vertical centreline. The mixed convection inlet velocity is treated as the sum of forced and natural convection components, with the individual components delineated based on pressure drop across the enclosure. The Reynolds number is based on forced convection velocity. Turbulence computations are performed using the standard k– model and the Launder–Sharma low-Reynolds number k– model. The results show that higher Reynolds numbers tend to create a recirculation region of increasing strength in the core region and that the effect of buoyancy becomes insignificant beyond a Reynolds number of typically 5×105. The Euler number in turbulent flows is higher by about 30 per cent than that in the laminar regime. The dimensionless inlet velocity in pure natural convection varies as Gr1/3. Results are also presented for a number of quantities of interest such as the flow and temperature distributions, Nusselt number, pressure drop and the maximum dimensionless temperature in the block, along with correlations.
Resumo:
Experimental results on a loop heat pipe, using R134a as the working fluid, indicates that the liquid inventory in the compensation chamber can significantly influence the operating characteristics. The large liquid inventory in the compensation chamber, under terrestrial conditions, can result in loss of thermal coupling between the compensation chamber and the evaporator core. This causes the operating temperature to increase monotonically. This phenomenon, which has been experimentally observed, is reported in this paper. A theoretical model to predict the steady-state performance of a loop heat pipe with a weak thermal link between the compensation chamber and the core, as observed in the experiment, is also presented. The predicted and the experimentally determined temperatures correlate well.
Resumo:
The nature of surface and subsurface reactions in polymer combustion is poorly underst0od.l During the burning of thermoplastic polymers a melt layer is observed on the surface, and below the melt layer there is thermal wave penetration. But the exact thickness of the melt layer and the thickness of the thermal wave penetration have not been precisely measured, although a qualitative idea has been given.