288 resultados para Grain boundary scattering
Study of magnetoresistance and conductance of bicrystal grain boundary in La0.67Ba0.33MnO3 thin film
Resumo:
La0.67Ba0.33MnO3 (LBMO) thin film is deposited on a 36.7degrees SrTiO3 bicrystal substrate using laser ablation technique. A microbridge is created across bicrystal grain boundary and its characteristics are compared with a microbridge on the LBMO film having no grain boundary. Presence of grain boundary exhibits substantial magnetoresistance ratio (MRR) in the low field and low temperature region. Bicrystal grain boundary contribution in MRR disappears at temperature T > 175 K. At low temperature, I-V characteristic of the microbridge across bicrystal grain boundary is nonlinear. Analysis of temperature dependence of dynamic conductance-voltage characteristics of the bicrystal grain boundary indicates that at low temperatures (T < 175 K) carrier transport across the grain boundary in LBMO film is dominated by inelastic tunneling via pairs of manganese atoms and tunneling through disordered oxides. At higher temperatures (T > 175 K), magnetic scattering process is dominating. Decrease of bicrystal grain boundary contribution in magnetoresistance with the increase in temperature is due to enhanced spin-flip scattering process.
Resumo:
The grain size dependence of the yield stress in hot rolled 99.87 pct magnesium sheets and rods was measured in the temperature range 77 K to 420 K. Hot rolling produced strong basal textures and, for a given grain size, the hot rolled material has a higher strength than extruded material. The yield strength-grain size relation in the above temperature range follows the Hall-Petch equation, and the temperature dependencies of the Hall-Petch constants σ0 and k are in support of the theory of Armstrong for hcp metals that the intercept σ0 is related to the critical resolved shear stress (CRSS) for basal slip (easy slip) and the slope k is related to the CRSS for prismatic slip (difficult slip) occurring near the grain boundaries. In the hot rolled magnesium, σ0 is larger and k is smaller than in extruded material, observations which are shown to result from strong unfavorable basal and favorable 1010 textures, respectively. Texture affects the Hall-Petch constants through its effect on the orientation factors relating them to the CRSS for the individual slip systems controlling them.
Resumo:
Tensile experiments on a fine-grained single-phase Mg–Zn–Al alloy (AZ31) at 673 K revealed superplastic behavior with an elongation to failure of 475% at 1 × 10−4 s−1 and non-superplastic behavior with an elongation to failure of 160% at 1 × 10−2 s−1; the corresponding strain rate sensitivities under these conditions were 0.5 and 0.2, respectively. Measurements indicated that the grain boundary sliding (GBS) contribution to strain ξ was 30% under non-superplastic conditions; there was also a significant sharpening in texture during such deformation. Under superplastic conditions, ξ was 50% at both low and high elongations of 20% and 120%; the initial texture became more random under such conditions. In non-superplastic conditions, deformation occurred under steady-state conditions without grain growth before significant flow localization whereas, under superplastic conditions, there was grain growth during the early stages of deformation, leading to strain hardening. The grains retained equiaxed shapes under all experimental conditions. Superplastic deformation is attributed to GBS, while non-superplastic deformation is attributed to intragranular dislocation creep with some contribution from GBS. The retention of equiaxed grain shapes during dislocation creep is consistent with a model based on local recovery related to the disturbance of triple junctions.
Resumo:
Donor doped BaTiO3 ceramics become insulating5 under controlled conditions with effective dielectric constants >10. The changes in EPR signals indicate that a certain fraction of the donor doped BaTiO3 is cubic even at room temperature and that the cubic fraction increases with the donor content. X-ray powder diffraction data support the EPR results. The coexistence of both the phases over a range of temperature is characteristic of diffused phase transition. The effect of grain size variation on EPR signal intensities indicate that the boundary layers surrounding the grains may constitute the cubic phase as a result of higher Ba-vacancies and donor contents at the grain boundary layer than in the bulk. Since the acceptor states arising from the Ba-vacancies and the impurities are activated in the cubic phase, they capture electrons from the conduction band, rendering the cubic phase electrically more insulating than the semiconductive tetragonal grain interiors. Thus, the cubic grain boundary layers act as effective dielectric media where the field tends to concentrate.
Resumo:
The equal-channel angular extrusion (ECAE) of Ti-bearing interstitial-free (IF) steel was performed following two different routes, up to four passes, at a temperature of 300 degrees C. The ECAE led to a grain refinement to submicron size. After the second pass, the grain size attained saturation thereafter. The microstructural analysis indicated the presence of coincident-site lattice (CSL) boundaries in significant fraction, in addition to a high volume fraction of high-angle random boundaries and some low-angle boundaries after the deformation. Among the special boundaries, Sigma 3 and Sigma 13 were the most prominent ones and their fraction depended on the processing route followed. A deviation in the misorientation angle distribution from the Mackenzie distribution was noticed. The crystallographic texture after the first pass resembled that of simple shear, with the {112}, {110}, and {123} aligned to the macroscopic shear plane.
Resumo:
Early studies on grain boundary sliding (GBS) in Mg alloys have suggested frequently that the contribution of GBS to creep is high even under conditions corresponding to dislocation creep. The role of creep strain and grain size in influencing the experimental measurements has not been clearly identified. Grain boundary sliding measurements were conducted in detail over experimental conditions corresponding to diffusion creep as well as dislocation creep in a single-phase Mg-0.7 wt pet Al alloy. The results indicated clearly that the GBS contribution to creep was Very high during,, diffusion creep at low stresses (similar to 75 pct) and substantially reduced during dislocation creep at high stresses (similar to 15 pct). These measurements were consistent with the observation of significant intragranular slip band activity observed in most grains at high stresses and very little slip band activity at low stresses. The experimental measurements and analysis indicated also that the GBS contribution to creep was high during the initial stages of creep and decreased to a steady-state value at large strains.
Resumo:
The presently developed two-stage process involves diping the prefired porous disks of n-BaTiO3 in nonaqueous solutions containing Al-buty rate, Ti-isopropoxide, and tetraethyl silicate and subsequent sintering. This leads to uniform distribution of the grain-boundary layer (GBL) modifiers (Al2O3+ TiO2+ SiO2) and better control of the grain size as well as the positive temperature coefficient of resistivity characteristics. The technique is particularly suited for GBL modifiers in low concentrations (< 1%).
Resumo:
The long-wavelength hydrodynamics of the Renn-Lubensky twist grain boundary phase with grain boundary angle 2pialpha, alpha irrational, is studied. We find three propagating sound modes, with two of the three sound speeds vanishing for propagation orthogonal to the grains, and one vanishing for propagation parallel to the grains as well. In addition, we find that the viscosities eta1, eta2, eta4, and eta5 diverge like 1/Absolute value of omega as frequency omega --> 0, with the divergent parts DELTAeta(i) satisfying DELTAeta1DELTAeta4=(DELTAeta5)2, exactly. Our results should also apply to the predicted decoupled lamellar phase.
Resumo:
Grain boundary sliding during high temperature deformation can lead to stress concentrations and an enhancement of diffusion in mobile boundaries. Experiments were conducted on a fine grained 3 mol% yttria stabilized tetragonal zirconia, under conditions associated with superplastic flow involving grain boundary sliding. Tracer diffusion studies under creep conditions and without load indicate that there is no enhancement in either the lattice or grain boundary diffusivities. The experimental creep data are consistent with an interface controlled diffusion creep mechanism. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Donor-doped n-(Ba,Pb)TiO3 polycrystalline ceramics exhibit distinctly two-step positive temperature coefficient of resistance (PTCR) characteristics when formulated with suitable combinations of B2O3 and Al2O3 as grain boundary modifiers by heterogeneous addition. B2O3 or Al2O3 when added singularly resulted in either steep or broad PTCR jumps respectively across the phase transition. The two-step PTCR is attributed to the activation of the acceptor states, created through B2O3 and Al2O3, for various temperature regimes above the Curie point (T-c). The changing pattern of trap states is evident from the presence of Ti4+-O--Al3+ type hole centres in the grain boundary layer regions, identified in the electron paramagnetic resonance (EPR) spectra. That charge redistribution occurs among the inter-band gap defect states on crossing the Curie temperature is substantiated by the temperature coefficient in the EPR results. Capacitance-voltage results clearly show that there is an increase in the density of trap states with the addition of B2O3 and Al2O3. The spread in energy values of these trap states is evident from the large change in barrier height (phi similar or equal to 0.25-0.6 eV) between 500 and 650 K.
Resumo:
In the present work, a thorough investigation of evolution of microstructure and texture has been carried out to elucidate the evolution of texture and grain boundary character distribution (GBCD) during Equal Channel Angular Extrusion (ECAE) of some model two-phase materials, namely Cu-0.3Cr and Cu-40Zn. Texture of Cu-0.3Cr alloy is similar to that reported for pure copper. On the other hand, in Cu-40Zn alloy, texture evolution in α and β (B2) phases are interdependent. In Cu-0.3Cr alloy, there is a considerable decreases in volume fraction of low angle boundaries (LAGBs), only a slight increase in CSL boundaries, but increase in high angle grain boundaries (HAGBs) from 1 pass to 4 passes for both the routes. In the case of Cu-40Zn alloy, there is an appreciable increase in CSL volume fraction.
Resumo:
The evolution of texture and microstructure during recrystallization is studied for two-phase copper alloy (Cu–40Zn) with a variation of the initial texture and microstructure (hot rolled and solution treated) as well as the mode of rolling (deformation path: uni-directional rolling and cross rolling). The results of bulk texture have been supported by micro-texture and microstructure studies carried out using electron back scatter diffraction (EBSD). The initial microstructural condition as well as the mode of rolling has been found to alter the recrystallization texture and microstructure. The uni-directionally rolled samples showed a strong Goss and BR {236}385 component while a weaker texture similar to that of rolling evolved for the cross-rolled samples in the α phase on recrystallization. The recrystallization texture of the β phase was similar to that of the rolling texture with discontinuous 101 α and {111} γ fiber with high intensity at {111}101. For a given microstructure, the cross-rolled samples showed a higher fraction of coincident site lattice Σ3 twin boundaries in the α phase. The higher fraction of Σ3 boundaries is explained on the basis of the higher propensity of growth accidents during annealing of the cross-rolled samples. The present investigation demonstrates that change in strain path, as introduced during cross-rolling, could be a viable tool for grain boundary engineering of low SFE fcc materials.
Resumo:
This investigation deals with the evolution of grain boundary microstructure and crystallographic texture during hot rolling of a Ni-rich NiTi alloy. Electron backscattered diffraction studies revealed the occurrence of several coincidence site lattice (CSL) boundaries. The origin of these boundaries has been identified. The crystallographic texture of the deformed sample consists mainly of (1 1 1)parallel to normal direction fiber. The texture components on the fiber exhibit some correlation with the type of CSL boundary. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Grain boundary dynamics and grain growth play a pivotal role in the fabrication of functional polycrystalline materials. However, not much is known about the delicate interplay between various microscopic processes that drive grain boundary motion which eventually culminates in the desired grain morphology. Colloidal systems are ideally suited to bridge the gap between the microscopic and macroscopic processes underlying grain growth, since their dynamics can be followed in real space and real time with single-particle resolution. The present review aims at highlighting contributions from colloid experiments that have led to a holistic understanding of grain growth in polycrystalline materials.