19 resultados para Golden Retriever
Resumo:
Pentoxifylline (PF) is used to enhance motility of spermatozoa from infertile human subjects. We have previously shown that 0.45 mM PF improved capacitation of spermatozoa and fertilization of oocytes in vitro in hamsters. The present study was carried out to assess PF- induced changes in motility kinematics of hamster spermatozoa by a computer-aided sperm analyser (CASA) and determine the timing of onset of hyperactivation (HA) and acrosome reaction (AR) in PF-treated spermatozoa. Motility kinematics were analysed by CASA for 0-8 h in the absence or presence of 0.45 mM PF in Tyrode's medium supplemented with lactate, pyruvate and polyvinyl alcohol (TLP-PVA) or in TLP-PVA with bovine serum albumin (TALP-PVA). Conventional assessment was also made on the percentage of motility and quality of motility of spermatozoa; values were expressed as sperm motility index (SMI). Both in TALP-PVA and TLP-PVA, PF markedly increased SMI, especially the quality of motility (P < 0.02) by 2-3 h which was sustained up to 6 h. The motility kinematic data of PF-treated spermatozoa in TALP-PVA showed that average path velocity, curvilinear velocity and amplitude of lateral head displacement significantly (P < 0.05) increased as early as 2 h, with the expected decrease in straightness (STR) and linearity (LIN). Similar changes were also observed with PF-treated spermatozoa in TLP-PVA. Moreover, the percentage of hyperactivated spermatozoa in PF-treated samples was significantly (P < 0.001) higher than the untreated control at 2 h. To determine whether PF could induce AR, independent of bovine serum albumin, quantitative AR was assessed by observing the presence or absence of acrosomal cap on viable spermatozoa. PF significantly (P < 0.001) increased the percentage of AR as early as 2 h, reaching maximum at 4 h both in TALP-PVA (P < 0.05) and in TLP-PVA (P < 0.001). These results show that, in hamsters, PF induces early onset (by 2 h) of HA and AR and increases the proportion of spermatozoa undergoing physiological maturation.
Resumo:
This paper presents a low-ML-decoding-complexity, full-rate, full-diversity space-time block code (STBC) for a 2 transmit antenna, 2 receive antenna multiple-input multiple-output (MIMO) system, with coding gain equal to that of the best and well known Golden code for any QAM constellation. Recently, two codes have been proposed (by Paredes, Gershman and Alkhansari and by Sezginer and Sari), which enjoy a lower decoding complexity relative to the Golden code, but have lesser coding gain. The 2 x 2 STBC presented in this paper has lesser decoding complexity for non-square QAM constellations, compared with that of the Golden code, while having the same decoding complexity for square QAM constellations. Compared with the Paredes-Gershman-Alkhansari and Sezginer-Sari codes, the proposed code has the same decoding complexity for non-rectangular QAM constellations. Simulation results, which compare the codeword error rate (CER) performance, are presented.
Resumo:
Pentoxifylline (PF) is used to improve motility of spermatozoa from subfertile or nonfertile males to accomplish in vitro fertilization in humans. The possible adverse effect of PF on pre- and peri- implantation stage embryo development in a suitable rodent model, such as the golden hamster, is yet to be determined. In this study, hamster cauda epididymal spermatozoa were exposed to different concentrations (0.23 to 3.6 mM) of PF, and their quantitative [percentage of motility] and qualitative [Score 0 to 5] motility were assessed and values expressed as the sperm motility index. Upon addition of spermatozoa to dishes containing PF, an immediate increase in sperm motility and sperm motility index was evident, which increased up to 4 to 6 h and then declined. The sperm motility index increase by PF was dose-dependant, and greater than or equal to 1.8 mM PF was detrimental after 4 h. The optimum dose of PF was found to be 0.45 mM. To assess the fertilizing ability of PF-treated spermatozoa, in vitro fertilization was carried out. Fertilization rates for spermatozoa treated with 3.6 mM PF were lower (53.8 +/- 7.8) than for the controls (69.5 +/- 10.2), whereas, treatment with 0.45 mM PF increased the rates (91.6 +/- 4.3) compared with that of the controls (80.2 +/- 5.9). In conclusion, low concentrations (0.23 to 0.45 mM) of PF improve sperm capacitation and fertilization of oocytes in vitro in the golden hamster.
Resumo:
This paper presents a low-ML-decoding-complexity, full-rate, full-diversity space-time block code (STBC) for a 2 transmit antenna, 2 receive antenna multiple-input multipleoutput (MIMO) system, with coding gain equal to that of the best and well known Golden code for any QAM constellation.Recently, two codes have been proposed (by Paredes, Gershman and Alkhansari and by Sezginer and Sari), which enjoy a lower decoding complexity relative to the Golden code, but have lesser coding gain. The 2 × 2 STBC presented in this paper has lesser decoding complexity for non-square QAM constellations,compared with that of the Golden code, while having the same decoding complexity for square QAM constellations. Compared with the Paredes-Gershman-Alkhansari and Sezginer-Sari codes, the proposed code has the same decoding complexity for nonrectangular QAM constellations. Simulation results, which compare the codeword error rate (CER) performance, are presented.
Resumo:
This paper deals with low maximum-likelihood (ML)-decoding complexity, full-rate and full-diversity space-time block codes (STBCs), which also offer large coding gain, for the 2 transmit antenna, 2 receive antenna (2 x 2) and the 4 transmit antenna, 2 receive antenna (4 x 2) MIMO systems. Presently, the best known STBC for the 2 2 system is the Golden code and that for the 4 x 2 system is the DjABBA code. Following the approach by Biglieri, Hong, and Viterbo, a new STBC is presented in this paper for the 2 x 2 system. This code matches the Golden code in performance and ML-decoding complexity for square QAM constellations while it has lower ML-decoding complexity with the same performance for non-rectangular QAM constellations. This code is also shown to be information-lossless and diversity-multiplexing gain (DMG) tradeoff optimal. This design procedure is then extended to the 4 x 2 system and a code, which outperforms the DjABBA code for QAM constellations with lower ML-decoding complexity, is presented. So far, the Golden code has been reported to have an ML-decoding complexity of the order of for square QAM of size. In this paper, a scheme that reduces its ML-decoding complexity to M-2 root M is presented.
Resumo:
Let G = (V,E) be a simple, finite, undirected graph. For S ⊆ V, let $\delta(S,G) = \{ (u,v) \in E : u \in S \mbox { and } v \in V-S \}$ and $\phi(S,G) = \{ v \in V -S: \exists u \in S$ , such that (u,v) ∈ E} be the edge and vertex boundary of S, respectively. Given an integer i, 1 ≤ i ≤ ∣ V ∣, the edge and vertex isoperimetric value at i is defined as b e (i,G) = min S ⊆ V; |S| = i |δ(S,G)| and b v (i,G) = min S ⊆ V; |S| = i |φ(S,G)|, respectively. The edge (vertex) isoperimetric problem is to determine the value of b e (i, G) (b v (i, G)) for each i, 1 ≤ i ≤ |V|. If we have the further restriction that the set S should induce a connected subgraph of G, then the corresponding variation of the isoperimetric problem is known as the connected isoperimetric problem. The connected edge (vertex) isoperimetric values are defined in a corresponding way. It turns out that the connected edge isoperimetric and the connected vertex isoperimetric values are equal at each i, 1 ≤ i ≤ |V|, if G is a tree. Therefore we use the notation b c (i, T) to denote the connected edge (vertex) isoperimetric value of T at i. Hofstadter had introduced the interesting concept of meta-fibonacci sequences in his famous book “Gödel, Escher, Bach. An Eternal Golden Braid”. The sequence he introduced is known as the Hofstadter sequences and most of the problems he raised regarding this sequence is still open. Since then mathematicians studied many other closely related meta-fibonacci sequences such as Tanny sequences, Conway sequences, Conolly sequences etc. Let T 2 be an infinite complete binary tree. In this paper we related the connected isoperimetric problem on T 2 with the Tanny sequences which is defined by the recurrence relation a(i) = a(i − 1 − a(i − 1)) + a(i − 2 − a(i − 2)), a(0) = a(1) = a(2) = 1. In particular, we show that b c (i, T 2) = i + 2 − 2a(i), for each i ≥ 1. We also propose efficient polynomial time algorithms to find vertex isoperimetric values at i of bounded pathwidth and bounded treewidth graphs.
Molecular phylogeny and biogeography of langurs and leaf monkeys of South Asia (Primates: Colobinae)
Resumo:
The two recently proposed taxonomies of the langurs and leaf monkeys (Subfamily Colobinae) provide different implications to our understanding of the evolution of Nilgiri and purple-faced langurs. Groves (2001) [Groves, C.P., 2001. Primate Taxonomy. Smithsonian Institute Press, Washington], placed Nilgiri and purple-faced langurs in the genus Trachypithecus, thereby suggesting disjunct distribution of the genus Trachypithecus. [Brandon-Jones, D., Eudey, A.A., Geissmann, T., Groves, C.P., Melnick, D.J., Morales, J.C., Shekelle, M., Stewart, C.-B., 2003. Asian primate classification. Int. J. Primatol. 25, 97–162] placed these langurs in the genus Semnopithecus, which suggests convergence of morphological characters in Nilgiri and purple-faced langurs with Trachypithecus. To test these scenarios, we sequenced and analyzed the mitochondrial cytochrome b gene and two nuclear DNA-encoded genes, lysozyme and protamine P1, from a variety of colobine species. All three markers support the clustering of Nilgiri and purple-faced langurs with Hanuman langur (Semnopithecus), while leaf monkeys of Southeast Asian (Trachypithecus) form a distinct clade. The phylogenetic position of capped and golden leaf monkeys is still unresolved. It is likely that this species group might have evolved due to past hybridization between Semnopithecus and Trachypithecus clades.
Resumo:
We present a simplified yet analytical formulation of the carrier backscattering coefficient for zig-zag semiconducting single walled carbon nanotubes under diffusive regime. The electron-phonon scattering rate for longitudinal acoustic, optical, and zone-boundary phonon emissions for both inter- and intrasubband transition rates have been derived using Kane's nonparabolic energy subband model.The expressions for the mean free path and diffusive resistance have been formulated incorporating the aforementioned phonon scattering. Appropriate overlap function in Fermi's golden rule has been incorporated for a more general approach. The effect of energy subbands on low and high bias zones for the onset of longitudinal acoustic, optical, and zone-boundary phonon emissions and absorption have been analytically addressed. 90% transmission of the carriers from the source to the drain at 400 K for a 5 mu m long nanotube at 105 V m(-1) has been exhibited. The analytical results are in good agreement with the available experimental data. (c) 2010 American Institute of Physics.
Resumo:
Numerous morphology-based classification schemes have been proposed for langurs and leaf monkeys of South Asia but there is very little agreement between them. An incorrect classification scheme when used as a basis for biogeographic studies can support erroneous hypotheses. Further, lack of taxonomic resolution will also confound conservation efforts, given that conservation biologists use traditional morphology-based-classification schemes to prioritize species for conservation. Here, I have revisited recent molecular phylogenetic studies done on langurs and leaf monkeys of South Asia. Results from these studies are in turn used to derive a rational and scientific basis for prioritizing species for conservation. Molecular data support the classification of langurs of the Indian subcontinent-Hanuman, Nilgiri and purple-faced langurs-in the genus Semnopithecus, whereas Phayre's leaf monkey along with other Southeast Asian leaf monkeys form another distinct clade (Trachypithecus). The phylogenetic position of capped and golden langurs remains unresolved. Molecular data suggest that they are closely related to each other but this group might have evolved through past hybridization between Semnopithecus and Trachypithecus. Additionally, genetic data also support the splitting of the so-called Hanuman langurs into at least three species. The scores for taxonomic uniqueness of langurs and leaf monkeys of South Asia were revised using this molecular phylogeny-based classification. According to the revised scores, Phayres leaf monkey and golden langur are priority species for conservation followed by capped and Nilgiri langurs.
Resumo:
We present a comparative study of the spin states and electronic properties of La1-xSrxCoO3 and La2-xSrxLi0.5Co0.5O4 using X-ray absorption near-edge structure spectroscopy at both the O-K and Co-L-2.3 thresholds. In the La2-xSrxLi0.5Co0.5O4 system the CoO6 octahedra are isolated, the holes induced by Sr doping are trapped in the isolated Co(IV)O-6 octahedra, and a low-spin state is found for the Co ions, which does not change upon Sr doping. In the La1-xSrxCoO3 system, the interconnected CoO6 octahedra, with a 180degrees Co-O-Co bond angle, give rise to a transition from low-spin to intermediate-spin state with a ferromagnetic alignment of the Co spins. The double-exchange, ferromagnetic coupling between Co ions mediated by the 180degrees bond angle is responsible for suppressing the low spin-state. We find that the branching ratio of spectral intensities at the L-2 and L-3 thresholds in the Co-L-2.3 X-ray absorption spectra is sensitive to the spin state of the Co ions allowing its direct spectroscopic determination. (C) 2002 Published by Elsevier Science B.V.
Resumo:
For an n(t) transmit, n(r) receive antenna system (n(t) x n(r) system), a full-rate space time block code (STBC) transmits at least n(min) = min(n(t), n(r))complex symbols per channel use. The well-known Golden code is an example of a full-rate, full-diversity STBC for two transmit antennas. Its ML-decoding complexity is of the order of M(2.5) for square M-QAM. The Silver code for two transmit antennas has all the desirable properties of the Golden code except its coding gain, but offers lower ML-decoding complexity of the order of M(2). Importantly, the slight loss in coding gain is negligible compared to the advantage it offers in terms of lowering the ML-decoding complexity. For higher number of transmit antennas, the best known codes are the Perfect codes, which are full-rate, full-diversity, information lossless codes (for n(r) >= n(t)) but have a high ML-decoding complexity of the order of M(ntnmin) (for n(r) < n(t), the punctured Perfect codes are considered). In this paper, a scheme to obtain full-rate STBCs for 2(a) transmit antennas and any n(r) with reduced ML-decoding complexity of the order of M(nt)(n(min)-3/4)-0.5 is presented. The codes constructed are also information lossless for >= n(t), like the Perfect codes, and allow higher mutual information than the comparable punctured Perfect codes for n(r) < n(t). These codes are referred to as the generalized Silver codes, since they enjoy the same desirable properties as the comparable Perfect codes (except possibly the coding gain) with lower ML-decoding complexity, analogous to the Silver code and the Golden code for two transmit antennas. Simulation results of the symbol error rates for four and eight transmit antennas show that the generalized Silver codes match the punctured Perfect codes in error performance while offering lower ML-decoding complexity.
Resumo:
A low complexity, essentially-ML decoding technique for the Golden code and the three antenna Perfect code was introduced by Sirianunpiboon, Howard and Calderbank. Though no theoretical analysis of the decoder was given, the simulations showed that this decoding technique has almost maximum-likelihood (ML) performance. Inspired by this technique, in this paper we introduce two new low complexity decoders for Space-Time Block Codes (STBCs)-the Adaptive Conditional Zero-Forcing (ACZF) decoder and the ACZF decoder with successive interference cancellation (ACZF-SIC), which include as a special case the decoding technique of Sirianunpiboon et al. We show that both ACZF and ACZF-SIC decoders are capable of achieving full-diversity, and we give a set of sufficient conditions for an STBC to give full-diversity with these decoders. We then show that the Golden code, the three and four antenna Perfect codes, the three antenna Threaded Algebraic Space-Time code and the four antenna rate 2 code of Srinath and Rajan are all full-diversity ACZF/ACZF-SIC decodable with complexity strictly less than that of their ML decoders. Simulations show that the proposed decoding method performs identical to ML decoding for all these five codes. These STBCs along with the proposed decoding algorithm have the least decoding complexity and best error performance among all known codes for transmit antennas. We further provide a lower bound on the complexity of full-diversity ACZF/ACZF-SIC decoding. All the five codes listed above achieve this lower bound and hence are optimal in terms of minimizing the ACZF/ACZF-SIC decoding complexity. Both ACZF and ACZF-SIC decoders are amenable to sphere decoding implementation.
Resumo:
The problem of designing good space-time block codes (STBCs) with low maximum-likelihood (ML) decoding complexity has gathered much attention in the literature. All the known low ML decoding complexity techniques utilize the same approach of exploiting either the multigroup decodable or the fast-decodable (conditionally multigroup decodable) structure of a code. We refer to this well-known technique of decoding STBCs as conditional ML (CML) decoding. In this paper, we introduce a new framework to construct ML decoders for STBCs based on the generalized distributive law (GDL) and the factor-graph-based sum-product algorithm. We say that an STBC is fast GDL decodable if the order of GDL decoding complexity of the code, with respect to the constellation size, is strictly less than M-lambda, where lambda is the number of independent symbols in the STBC. We give sufficient conditions for an STBC to admit fast GDL decoding, and show that both multigroup and conditionally multigroup decodable codes are fast GDL decodable. For any STBC, whether fast GDL decodable or not, we show that the GDL decoding complexity is strictly less than the CML decoding complexity. For instance, for any STBC obtained from cyclic division algebras which is not multigroup or conditionally multigroup decodable, the GDL decoder provides about 12 times reduction in complexity compared to the CML decoder. Similarly, for the Golden code, which is conditionally multigroup decodable, the GDL decoder is only half as complex as the CML decoder.
Resumo:
A new species of lygosomatine scincid lizard is described from the sacred forests of Mawphlang, in Meghalaya, northeastern India. Sphenomorphus apalpebratus sp. nov. possesses a spectacle or brille, an unusual feature within the Scincidae, and a first for the paraphyletic genus Sphenomorphus. The new species is compared with other members of the genus to which it is here assigned, as well as to members of the lygosomatine genera Lipinia and Scincella from mainland India, the Andaman and Nicobar Islands, and south-east Asia, to which it also bears resemblance. The new taxon is diagnosable in exhibiting the following combination of characters: small body size (SVL to 42.0 mm); moveable eyelids absent; auricular opening scaleless, situated in a shallow depression; dorsal scales show a line of demarcation along posterior edge of ventral pes; midbody scale rows 27-28; longitudinal scale rows between parietals and base of tail 62-64; lamellae under toe IV 8-9; supraoculars five; supralabials 5-6; infralabials 4-5; subcaudals 92; and dorsum golden brown, except at dorsal margin of lateral line, which is lighter, with four faintly spotted lines, two along each side of vertebral row of scales, that extend to tail base. The new species differs from its congeners in the lack of moveable eyelids, a character shared with several distantly related scincid genera.