29 resultados para Genetic Engineering.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

PIP: A delphi study was conducted to identify or envision health scenarios in India by the year 2000. Questionnaires consisting of 48 questions on 5 areas (diagnosis and therapy; family planning; pharmaceuticals and drugs; biochemical and biomedical research; health services) were mailed to 250 experts in India. 36 responded. Results were compiled and mailed back to the respondents for changes and comments. 17 people responded. Results of the delphi study shows that policy decisions with respect to compulsory family planning as well as health education at secondary school level will precede further breakthroughs in birth control technology. Non operation reversible sterilization procedures, immunological birth control, Ayurvedic medicines for contraception and abortion, and selection of baby's sex are all possible by 2000 thereafter. Complete eradication of infectious diseases, malnutrition and associated diseases is considered unlikely before 2000, as are advances in biomedical research. Changes in health services (e.g., significant increases in hospital beds and doctors, cheap bulk drugs), particularly in rural areas, are imminent, leading to prolonging of life expectancy to 70 years. Genetic engineering may provide significant breakthroughs in the prevention of malignancies and cardiac disorders. The India delphi study is patterned after a similar delphi study conducted in the U.S. by Smith, Kline and French (SKF) Laboratories in 1968. The SKF study was able to predict some breakthroughs with basic research which have been realized.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The developing seeds of Actinodaphne hookeri were investigated to delineate their ability to synthesize large amounts of trilaurin. Until 88 days after flowering the embryos contained 71% neutral lipids (NL) and 29% phospholipids (PL) and both these components contained C-16:0, C-18:0, C-18:2, and C-18:3 as the major fatty acids (FA). At 102 days after flowering the seeds began to accumulate triacylglycerols (TAG) and to synthesize lauric acid (C-12:0). By 165 days after flowering, when the seeds were mature, they contained about 99% NL and 1% FL. At this stage the TAG contained exclusively C-12:0, while the PL consisted of long-chain fatty acids (LCFA) only. Leaf lipids in contrast did not contain any C-12:0. Experiments on [1-C-14]acetate incorporation into developing seed slices showed that at 88 days after flowering only 4% of the label was in TAG, 1% in diacylglycerols (DAG), and 87% in FL. One hundred two days after flowering seeds incorporated only 2% of the label into TAG, 30% into DAG, and 64% into FL. In contrast at 114 days after flowering 71% of the label was incorporated into TAG, 25% into DAG, and only 2% into FL. Analysis of labeled FA revealed that up to 102 days after flowering it was incorporated only into LCFA, whereas at 114 days after flowering it was incorporated exclusively into C-12:0. Furthermore, 67% of the label in PL at 114 days after flowering was found to be dilaurylglycerophosphate. Analysis of the label in DAG at this stage showed that it was essentially in dilaurin species. These observations indicate the induction of enzymes of Kennedy pathway for the specific synthesis of trilaurin at about 114 days after flowering, Homogenates of seeds (114 days after flowering) incubated with labeled FA in the presence of glycerol-3-phosphate and coenzymes A and ATP incorporated 84% of C-12:0 and 61% of C-14:0, but not C-16:0, C-18:2, and C-18:3, into TAG. In contrast the LCFA were incorporated preferentially into FL. It is concluded that, between 102 and 114 days after flowering, a switch occurs in A. hookeri for the synthesis of C-12:0 and trilaurin which is tissue specific. Since the seed synthesizes exclusively C-12:0 at 114 days after flowering onwards and incorporates specifically into TAG, this system appears to be ideal for identifying the enzymes responsible for medium-chain fatty acid as well as trilaurin synthesis and for exploiting them for genetic engineering. (C) 1994 Academic Press, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sugars perform two vital functions in plants: as compatible solutes protecting the cell against osmotic stress and as mobile source of immediate and long-term energy requirement for growth and development. The two sugars that occur commonly in nature are sucrose and trehalose. Sucrose comprises one glucose and one fructose molecule; trehalose comprises two glucose molecules. Trehalose occurs in significant amounts in insects and fungi which greatly outnumber the plants. Surprisingly, in plants trehalose has been found in barely detectable amounts, if at all, raising the question `why did nature select sucrose instead of trehalose as the mobile energy source and as storage sugar for the plants'? Modelling revealed that when attached to the ribbon-shaped beta-1,4 glucan a trehalose molecule is shaped like a hook. This suggests that the beta-1,4 glucan chains with attached trehalose will fail to align to form inter-chain hydrogen bonds and coalesce into a cellulose microfibril, as a result of which in trehalose-accumulating plant cells, the cell wall will tend to become leaky. Thus in plants an evolutionary selection was made in favour of sucrose as the mobile energy source. Genetic engineering of plant cells for combating abiotic stresses through microbial trehalose-producing genes is fraught with risk of damage to plant cell walls.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: A genetic network can be represented as a directed graph in which a node corresponds to a gene and a directed edge specifies the direction of influence of one gene on another. The reconstruction of such networks from transcript profiling data remains an important yet challenging endeavor. A transcript profile specifies the abundances of many genes in a biological sample of interest. Prevailing strategies for learning the structure of a genetic network from high-dimensional transcript profiling data assume sparsity and linearity. Many methods consider relatively small directed graphs, inferring graphs with up to a few hundred nodes. This work examines large undirected graphs representations of genetic networks, graphs with many thousands of nodes where an undirected edge between two nodes does not indicate the direction of influence, and the problem of estimating the structure of such a sparse linear genetic network (SLGN) from transcript profiling data. Results: The structure learning task is cast as a sparse linear regression problem which is then posed as a LASSO (l1-constrained fitting) problem and solved finally by formulating a Linear Program (LP). A bound on the Generalization Error of this approach is given in terms of the Leave-One-Out Error. The accuracy and utility of LP-SLGNs is assessed quantitatively and qualitatively using simulated and real data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) initiative provides gold standard data sets and evaluation metrics that enable and facilitate the comparison of algorithms for deducing the structure of networks. The structures of LP-SLGNs estimated from the INSILICO1, INSILICO2 and INSILICO3 simulated DREAM2 data sets are comparable to those proposed by the first and/or second ranked teams in the DREAM2 competition. The structures of LP-SLGNs estimated from two published Saccharomyces cerevisae cell cycle transcript profiling data sets capture known regulatory associations. In each S. cerevisiae LP-SLGN, the number of nodes with a particular degree follows an approximate power law suggesting that its degree distributions is similar to that observed in real-world networks. Inspection of these LP-SLGNs suggests biological hypotheses amenable to experimental verification. Conclusion: A statistically robust and computationally efficient LP-based method for estimating the topology of a large sparse undirected graph from high-dimensional data yields representations of genetic networks that are biologically plausible and useful abstractions of the structures of real genetic networks. Analysis of the statistical and topological properties of learned LP-SLGNs may have practical value; for example, genes with high random walk betweenness, a measure of the centrality of a node in a graph, are good candidates for intervention studies and hence integrated computational – experimental investigations designed to infer more realistic and sophisticated probabilistic directed graphical model representations of genetic networks. The LP-based solutions of the sparse linear regression problem described here may provide a method for learning the structure of transcription factor networks from transcript profiling and transcription factor binding motif data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New antiretroviral drugs that offer large genetic barriers to resistance, such as the recently approved inhibitors of HIV-1 protease, tipranavir and darunavir, present promising weapons to avert the failure of current therapies for HIV infection. Optimal treatment strategies with the new drugs, however, are yet to be established. A key limitation is the poor understanding of the process by which HIV surmounts large genetic barriers to resistance. Extant models of HIV dynamics are predicated on the predominance of deterministic forces underlying the emergence of resistant genomes. In contrast, stochastic forces may dominate, especially when the genetic barrier is large, and delay the emergence of resistant genomes. We develop a mathematical model of HIV dynamics under the influence of an antiretroviral drug to predict the waiting time for the emergence of genomes that carry the requisite mutations to overcome the genetic barrier of the drug. We apply our model to describe the development of resistance to tipranavir in in vitro serial passage experiments. Model predictions of the times of emergence of different mutant genomes with increasing resistance to tipranavir are in quantitative agreement with experiments, indicating that our model captures the dynamics of the development of resistance to antiretroviral drugs accurately. Further, model predictions provide insights into the influence of underlying evolutionary processes such as recombination on the development of resistance, and suggest guidelines for drug design: drugs that offer large genetic barriers to resistance with resistance sites tightly localized on the viral genome and exhibiting positive epistatic interactions maximally inhibit the emergence of resistant genomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article analyzes the effect of devising a new failure envelope by the combination of the most commonly used failure criteria for the composite laminates, on the design of composite structures. The failure criteria considered for the study are maximum stress and Tsai-Wu criteria. In addition to these popular phenomenological-based failure criteria, a micromechanics-based failure criterion called failure mechanism-based failure criterion is also considered. The failure envelopes obtained by these failure criteria are superimposed over one another and a new failure envelope is constructed based on the lowest absolute values of the strengths predicted by these failure criteria. Thus, the new failure envelope so obtained is named as most conservative failure envelope. A minimum weight design of composite laminates is performed using genetic algorithms. In addition to this, the effect of stacking sequence on the minimum weight of the laminate is also studied. Results are compared for the different failure envelopes and the conservative design is evaluated, with respect to the designs obtained by using only one failure criteria. The design approach is recommended for structures where composites are the key load-carrying members such as helicopter rotor blades.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the use of Genetic Programming (GP) to create an approximate model for the non-linear relationship between flexural stiffness, length, mass per unit length and rotation speed associated with rotating beams and their natural frequencies. GP, a relatively new form of artificial intelligence, is derived from the Darwinian concept of evolution and genetics and it creates computer programs to solve problems by manipulating their tree structures. GP predicts the size and structural complexity of the empirical model by minimizing the mean square error at the specified points of input-output relationship dataset. This dataset is generated using a finite element model. The validity of the GP-generated model is tested by comparing the natural frequencies at training and at additional input data points. It is found that by using a non-dimensional stiffness, it is possible to get simple and accurate function approximation for the natural frequency. This function approximation model is then used to study the relationships between natural frequency and various influencing parameters for uniform and tapered beams. The relations obtained with GP model agree well with FEM results and can be used for preliminary design and structural optimization studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we consider the machining condition optimization models presented in earlier studies. Finding the optimal combination of machining conditions within the constraints is a difficult task. Hence, in earlier studies standard optimization methods are used. The non-linear nature of the objective function, and the constraints that need to be satisfied makes it difficult to use the standard optimization methods for the solution. In this paper, we present a real coded genetic algorithm (RCGA), to find the optimal combination of machining conditions. We present various issues related to real coded genetic algorithm such as solution representation, crossover operators, and repair algorithm in detail. We also present the results obtained for these models using real coded genetic algorithm and discuss the advantages of using real coded genetic algorithm for these problems. From the results obtained, we conclude that real coded genetic algorithm is reliable and accurate for solving the machining condition optimization models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose a self Adaptive Migration Model for Genetic Algorithms, where parameters of population size, the number of points of crossover and mutation rate for each population are fixed adaptively. Further, the migration of individuals between populations is decided dynamically. This paper gives a mathematical schema analysis of the method stating and showing that the algorithm exploits previously discovered knowledge for a more focused and concentrated search of heuristically high yielding regions while simultaneously performing a highly explorative search on the other regions of the search space. The effective performance of the algorithm is then shown using standard testbed functions, when compared with Island model GA(IGA) and Simple GA(SGA).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of scheduling divisible loads in distributed computing systems, in presence of processor release time is considered. The objective is to find the optimal sequence of load distribution and the optimal load fractions assigned to each processor in the system such that the processing time of the entire processing load is a minimum. This is a difficult combinatorial optimization problem and hence genetic algorithms approach is presented for its solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many optimal control problems are characterized by their multiple performance measures that are often noncommensurable and competing with each other. The presence of multiple objectives in a problem usually give rise to a set of optimal solutions, largely known as Pareto-optimal solutions. Evolutionary algorithms have been recognized to be well suited for multi-objective optimization because of their capability to evolve a set of nondominated solutions distributed along the Pareto front. This has led to the development of many evolutionary multi-objective optimization algorithms among which Nondominated Sorting Genetic Algorithm (NSGA and its enhanced version NSGA-II) has been found effective in solving a wide variety of problems. Recently, we reported a genetic algorithm based technique for solving dynamic single-objective optimization problems, with single as well as multiple control variables, that appear in fed-batch bioreactor applications. The purpose of this study is to extend this methodology for solution of multi-objective optimal control problems under the framework of NSGA-II. The applicability of the technique is illustrated by solving two optimal control problems, taken from literature, which have usually been solved by several methods as single-objective dynamic optimization problems. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of assigning customers to satellite channels is considered. Finding an optimal allocation of customers to satellite channels is a difficult combinatorial optimization problem and is shown to be NP-complete in an earlier study. We propose a genetic algorithm (GA) approach to search for the best/optimal assignment of customers to satellite channels. Various issues related to genetic algorithms such as solution representation, selection methods, genetic operators and repair of invalid solutions are presented. A comparison of this approach with the standard optimization method is presented to show the advantages of this approach in terms of computation time

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a genetic algorithm (GA) model for obtaining an optimal operating policy and optimal crop water allocations from an irrigation reservoir. The objective is to maximize the sum of the relative yields from all crops in the irrigated area. The model takes into account reservoir inflow, rainfall on the irrigated area, intraseasonal competition for water among multiple crops, the soil moisture dynamics in each cropped area, the heterogeneous nature of soils. and crop response to the level of irrigation applied. The model is applied to the Malaprabha single-purpose irrigation reservoir in Karnataka State, India. The optimal operating policy obtained using the GA is similar to that obtained by linear programming. This model can be used for optimal utilization of the available water resources of any reservoir system to obtain maximum benefits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications. (C) 2005 Elsevier B. V. All rights reserved.