46 resultados para Gases in plants.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystalline mung bean nucleotide pyrophosphatase was inhibited nonlinearly by AMP, one of the products of the reaction. The partially inactive enzyme was specifically reactivated by ADP, and V at maximal activation was the same as that of the native enzyme. ATP was a linear, noncompetitive inhibitor. The kinetic evidence suggested that ADP and ATP might not be reacting at the same site as AMP. The electrophoretic mobility of the enzyme was increased by AMP, whereas ADP and ATP were without effect. The enzyme was denatured on treatment with urea or guanidine hydrochloride. The renatured and the native enzyme had the same pH (9.4) and temperature (49 °C) optimum. The Km (0.2 mImage ) and V (3.2) of the native enzyme increased on renaturation to 1.8 mImage and 8.0, respectively. In addition, renaturation resulted in desensitization of the enzyme to inhibition by low concentrations of AMP. Renaturation did not affect the reactivation of the apoenzyme by Zn2+.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acetone powders prepared from leaf extracts of Tecoma stans L. were found to catalyze the oxidation of catechol to 3,4,3',4'-tetrahydroxydiphenyl. Fractionation of the acetone powders obtained from Tecoma leaves with acetone, negative adsorption of the acetone fraction with tricalcium phosphate gel, and chromatography of the gel supernatant on DEAE-Sephadex yielded a 68-fold purified enzyme with 66% recovery. The enzyme had an optimum pH around 7.2. It showed a temperature optimum of 30° and the Km for catechol was determined as 2 x 10-4 m. The purified enzyme moved as a single band on polyacrylamide gel electrophoresis. Its activity was found to be partially stimulated by Mg2+. The reaction was not inhibited by o-phenanthroline and agr,agr'-dipyridyl. The purified enzyme was highly insensitive to a range of copper-chelating agents. It was not affected appreciably by thiol inhibitors. The reaction was found to be suppressed to a considerable extent by reducing agents like GSH, cysteine, cysteamine, and ascorbic acid. The purified enzyme was remarkably specific for catechol. Catalase affected neither the enzyme activity nor the time course of the reaction. Hydrogen peroxide was not formed as a product of the reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystalline mung bean nucleotide pyrophosphatase was inhibited nonlinearly by AMP, one of the products of the reaction. The partially inactive enzyme was specifically reactivated by ADP, and V at maximal activation was the same as that of the native enzyme. ATP was a linear, noncompetitive inhibitor. The kinetic evidence suggested that ADP and ATP might not be reacting at the same site as AMP. The electrophoretic mobility of the enzyme was increased by AMP, whereas ADP and ATP were without effect. The enzyme was denatured on treatment with urea or guanidine hydrochloride. The renatured and the native enzyme had the same pH (9.4) and temperature (49 °C) optimum. The Km (0.2 m ) and V (3.2) of the native enzyme increased on renaturation to 1.8 m and 8.0, respectively. In addition, renaturation resulted in desensitization of the enzyme to inhibition by low concentrations of AMP. Renaturation did not affect the reactivation of the apoenzyme by Zn2+.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The addition of AMP to the crystalline and homogeneous mung bean nucleotide pyrophosphatase [EC 3.6.1.9]altered its electrophoretic mobility. AMP was tightly bound to the enzyme and was not removed on passage through a column of Sephadex G-25 or on electrophoresis. The molecular weight of the native and AMP-modified enzymes were 65,000 and 136,000, respectively. The properties of the native enzyme such as the pH (9.4) and temperature (49 °C) optima, inhibition by EDTA, reversal of EDTA-inhibition by Zn2+ and Co2+, were not altered on dimerization by AMP. The AMP-modified enzyme had a linear time-course of reaction, unlike the native enzyme which exhibited a biphasic time-course of reaction. The AMP-modified enzyme was irreversibly denatured by urea. AMP concentrations larger than 100 μM inhibited linearly the activity of the AMP-modified enzyme. ADP and ATP inhibited the activity in a sigmoidal manner. Km and V of the native and AMP-modified enzymes were, 0.25 mImage and 0.58 mImage ; and 3.3 and 2.5, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immobile plants and immobile modular animals outlive unitary animals. This paper discusses competing but not necessarily mutually exclusive theories to explain this extreme longevity, especially from the perspective of phenotypic plasticity. Stem cell immortality, vascular autonomy, and epicormic branching are some important features of the phenotypic plasticity of plants that contribute to their longevity. Monocarpy versus polycarpy can also influence the kind of senescent processes experienced by plants. How density-dependent phenomena affecting the establishment of juveniles in these immobile organisms can influence the evolution of senescence, and consequently longevity, is reviewed and discussed. Whether climate change scenarios will favour long-lived or short-lived organisms, with their attendant levels of plasticity, is also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The highly purified enzyme from mung bean seedlings hydrolyzing FAD at pH 9.4 and temperature 49 °, functioned with an initial fast rate followed by a second slower rate. The activity was linear with enzyme concentration over a small range of concentration and was dependent on the time of incubation. Inhibition of enzyme activity with increasing concentrations of AMP was sigmoid;concentrations less than 1 × 10−6 M were without effect, concentrations between 1 × 10−6 and 8 × 10−5 M inhibited by 20% and concentrations beyond 8 × 10−5 Image caused progressive inhibition. Concentrations beyond 1 × 10−3 Image inhibited the activity completely. Preincubation of the enzyme with PCMB or NEM, or aging, or reversible denaturation with urea abolished the inhibitory effect of AMP at concentrations lower than 8 × 10−6 Image . The aged enzyme could be reactivated by ADP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The occurrence of an enzyme hydrolyzing flavine adenine dinucleotide (FAD) was demonstrated in a number of seed extracts. The enzyme from Phaseolus radiatus was purified 104-fold by fractionation with ammonium sulfate and ethanol and by negative adsorption on alumina Cγ gel. The enzyme cleaves the POP bond of FAD to yield flavine mononucleotide and adenosine monophosphate. When reduced glutathione is added to the enzyme, it cleaves FAD at the COP bond to yield riboflavine, adenosine, and pyrophosphate, Both the activities are optimal at a pH of 7.2 and at a temperature of 37 . The Km for both the activities is 1.65 × 10−5 M. The stoichiometry and the identity of the products of both the treated and untreated enzyme were established. The untreated enzyme was not inhibited by pCMB or arsenite, but the treated enzyme was sensitive to both these inhibitors. The inhibition by pCMB could be reversed by monothiols and the inhibition by arsenite by dithiols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. 1. An enzyme catalysing the conversion of α,β-dihydroxyisovalerate and α,β-dihydroxy-β-methylvalerate to α-ketoisovalerate and α-keto-β-methylvalerate has been partially purified from green gram (Phaseolus radiatus), and its characteristics studied. 2. 2. A natural inhibitor, heat stable and inorganic in nature, was observed in the crude extracts. 3. 3. The observed Km values for α-β-dihydroxyisovalerate and α,β-dihydroxy-β-methylvalerate were 2.4 · 10-3 M and 9 · 10-4 M, respectively. 4. 4. The enzyme required the presence of a divalent metal ion (Mg2+, Mn2+ or Fe2+) for maximal activity. Heavy metals like Ag+ and Hg2+ were inhibitory. 5. 5. The optimal activity was around pH 8.0 and the optimum temperature at 52°. The activation energy is found to be 12 600 cal/mole. 6. 6. The enzyme was inhibited by p-hydroxymercuribenzoate, N-ethylmaleimide and sulphydryl compounds like cysteine, glutathione, 2-mercaptoethanol and 2,3-dimercaptopropanol. The inhibition by p-hydroxymercuribenzoate could not be reversed by any of the sulfhydryl compounds tested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The enzymic hydrolysis of riboflavin to lumichrome and ribitol by extracts of Crinum longifolium bulbs has been demonstrated. The enzyme was purified 48-fold by ZnSO4 treatment and ethanol fractionation, and concentrated by using Sephadex G-25. After establishing the stoichiometry of the reaction, the general properties of the purified enzyme were studied. The enzyme showed maximal activity at pH 7·5, and it had a requirement for reduced glutathione which could be replaced by cysteine or ascorbic acid. Mg2+ and Li+ activated the enzyme. The reaction was highly specific to riboflavin and was competitively inhibited by riboflavin 5′-phosphate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. 1. The presence of an enzyme system in plants catalyzing the formation of α-acetolactate from pyruvate has been demonstrated; the system in green gram (Phaseolus radiatus) has been partially purified and its characteristics have been studied.2. Free acetaldehyde is formed as a product of the reaction and so the reaction is mainly diverted towards the formation of acetoin. 3. The system requires thiamine pyrophosphate and a divalent metal ion (Mn2+ or Mg2+) for maximum activity. The optimum pH is around 6.0 and the optimum temperature is 60°. 4. The system is very labile in absence of pyruvate, Mn2+ and DPT. 5. The Km values for pyruvate, Mn2+, Mg2+ and DPT are 3·10−2 M. 5·10−5 M, 2·10−5 M, and e·10−6 M respectively. The activation energy is 3540 cal/mole. 6. The enzyme is strongly inhibited by p-chloromercuribenzoate and the inhibition can be reversed partially by 2-mercaptoethanol, BAL or cysteine. Heavy metals, such as Hg2+ and Ag+, are inhibitory but l-valine does not inhibit the reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The partial purification of the enzyme hydrolysing FMN from extracts of greengram seeds (Phaseolus radiatus) is described. The procedures, which entailed precipitation of inert material by manganous sulfate and protamine sulfate treatment, fractional precipitation with alcohol and chromatography on CM-cellulose, afforded preparations whose specific activity was 200 times that of the initial crude extract. The preparation was comparatively specific for FMN. It also hydrolysed, to a much smaller extent, β-glycerophosphate, p-nitrophenyl phosphate and 5′-nucleotides. The differential effects of ions on the FMN and β-glycerophosphate hydrolysing activities are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The partial purification of the enzyme hydrolysing FMN from extracts of greengram seeds (Phaseolus radiatus) is described. The procedures, which entailed precipitation of inert material by manganous sulfate and protamine sulfate treatment, fractional precipitation with alcohol and chromatography on CM-cellulose, afforded preparations whose specific activity was 200 times that of the initial crude extract. The preparation was comparatively specific for FMN. It also hydrolysed, to a much smaller extent, β-glycerophosphate, p-nitrophenyl phosphate and 5′-nucleotides. The differential effects of ions on the FMN and β-glycerophosphate hydrolysing activities are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The preparation of the enzyme hydrolysing FMN whose partial purification from green-gram extracts is described in the preceding paper, has been shown to possess phosphotransferase activity. The enzyme could transfer the phosphate group cleaved from FMN to acceptors like thiamine, pyridoxal, pyridoxamine and nucleosides resulting in the formation of their corresponding phosphate esters and nucleotides. The properties of the enzyme hydrolysing FMN and the phosphotransferase activity of the preparation are compared.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infiltration experiments with the intact seeds of Bengal gram (Cicer arietinum) indicated that indole and serine are the immediate precursors of tryptophan in this legume. The enzyme, tryptophan synthetase, has been demonstrated in cell-free extracts of the resting seeds. The optimum pH of the reaction was 5.5, and the Km value for indole at a constant serine concentration of 10−4M was 0.57 × 10−4M. There was a specific requirement for pyridoxal phosphate. Heavy-metal ions were inhibitory.