44 resultados para Game world
Resumo:
Motivated by the observation that communities in real world social networks form due to actions of rational individuals in networks, we propose a novel game theory inspired algorithm to determine communities in networks. The algorithm is decentralized and only uses local information at each node. We show the efficacy of the proposed algorithm through extensive experimentation on several real world social network data sets.
Resumo:
We analytically study the role played by the network topology in sustaining cooperation in a society of myopic agents in an evolutionary setting. In our model, each agent plays the Prisoner's Dilemma (PD) game with its neighbors, as specified by a network. Cooperation is the incumbent strategy, whereas defectors are the mutants. Starting with a population of cooperators, some agents are switched to defection. The agents then play the PD game with their neighbors and compute their fitness. After this, an evolutionary rule, or imitation dynamic is used to update the agent strategy. A defector switches back to cooperation if it has a cooperator neighbor with higher fitness. The network is said to sustain cooperation if almost all defectors switch to cooperation. Earlier work on the sustenance of cooperation has largely consisted of simulation studies, and we seek to complement this body of work by providing analytical insight for the same. We find that in order to sustain cooperation, a network should satisfy some properties such as small average diameter, densification, and irregularity. Real-world networks have been empirically shown to exhibit these properties, and are thus candidates for the sustenance of cooperation. We also analyze some specific graphs to determine whether or not they sustain cooperation. In particular, we find that scale-free graphs belonging to a certain family sustain cooperation, whereas Erdos-Renyi random graphs do not. To the best of our knowledge, ours is the first analytical attempt to determine which networks sustain cooperation in a population of myopic agents in an evolutionary setting.
Resumo:
Recently, efficient scheduling algorithms based on Lagrangian relaxation have been proposed for scheduling parallel machine systems and job shops. In this article, we develop real-world extensions to these scheduling methods. In the first part of the paper, we consider the problem of scheduling single operation jobs on parallel identical machines and extend the methodology to handle multiple classes of jobs, taking into account setup times and setup costs, The proposed methodology uses Lagrangian relaxation and simulated annealing in a hybrid framework, In the second part of the paper, we consider a Lagrangian relaxation based method for scheduling job shops and extend it to obtain a scheduling methodology for a real-world flexible manufacturing system with centralized material handling.
Resumo:
he Dirac generator formalism for relativistic Hamiltonian dynamics is reviewed along with its extension to constraint formalism. In these theories evolution is with respect to a dynamically defined parameter, and thus time evolution involves an eleventh generator. These formulations evade the No-Interaction Theorem. But the incorporation of separability reopens the question, and together with the World Line Condition leads to a second no-interaction theorem for systems of three or more particles. Proofs are omitted, but the results of recent research in this area is highlighted.
Resumo:
The problem of learning correct decision rules to minimize the probability of misclassification is a long-standing problem of supervised learning in pattern recognition. The problem of learning such optimal discriminant functions is considered for the class of problems where the statistical properties of the pattern classes are completely unknown. The problem is posed as a game with common payoff played by a team of mutually cooperating learning automata. This essentially results in a probabilistic search through the space of classifiers. The approach is inherently capable of learning discriminant functions that are nonlinear in their parameters also. A learning algorithm is presented for the team and convergence is established. It is proved that the team can obtain the optimal classifier to an arbitrary approximation. Simulation results with a few examples are presented where the team learns the optimal classifier.
Resumo:
Some aspects of the properties of oxides of perovskite and K2 NiF4 structures are presented. Some of the interesting aspects discussed are intergrowths, orthorhombicity of superconducting cuprates and importance of holes on oxygen.
Resumo:
A cooperative game played in a sequential manner by a pair of learning automata is investigated in this paper. The automata operate in an unknown random environment which gives a common pay-off to the automata. Necessary and sufficient conditions on the functions in the reinforcement scheme are given for absolute monotonicity which enables the expected pay-off to be monotonically increasing in any arbitrary environment. As each participating automaton operates with no information regarding the other partner, the results of the paper are relevant to decentralized control.
Resumo:
Editor's Note: Satyendranath Bose, known primarily as one of the co–founders of quantum statistics, died on 4 February 1974, a few weeks after a symposium in honor of his 80th birthday was held at the Saha Institute for Nuclear Physics in Calcutta. The following paper, originally prepared in that connection, reviews some of the more important developments in particle physics which followed from the fundamental insight contained in a four–page paper published by Bose exactly fifty years ago. At the request of the editors of the AJP, Professor Sudarshan has kindly consented to adapt his paper for reproduction here. We would like to thank William Blanpied for bringing this paper to our attention.
Resumo:
Bacterial persistent infections are responsible for a significant amount of the human morbidity and mortality. Unlike acute bacterial infections, it is very difficult to treat persistent bacterial infections (e.g. tuberculosis). Knowledge about the location of pathogenic bacteria during persistent infection will help to treat such conditions by designing novel drugs which can reach such locations. In this study, events of bacterial persistent infections were analyzed using game theory. A game was defined where the pathogen and the host are the two players with a conflict of interest. Criteria for the establishment of Nash equilibrium were calculated for this game. This theoretical model, which is very simple and heuristic, predicts that during persistent infections pathogenic bacteria stay in both intracellular and extracellular compartments of the host. The result of this study implies that a bacterium should be able to survive in both intracellular and extracellular compartments of the host in order to cause persistent infections. This explains why persistent infections are more often caused by intracellular pathogens like Mycobacterium and Salmonella. Moreover, this prediction is in consistence with the results of previous experimental studies.
Resumo:
In this paper we consider the task of prototype selection whose primary goal is to reduce the storage and computational requirements of the Nearest Neighbor classifier while achieving better classification accuracies. We propose a solution to the prototype selection problem using techniques from cooperative game theory and show its efficacy experimentally.
Resumo:
In a three player quantum `Dilemma' game each player takes independent decisions to maximize his/her individual gain. The optimal strategy in the quantum version of this game has a higher payoff compared to its classical counterpart. However, this advantage is lost if the initial qubits provided to the players are from a noisy source. We have experimentally implemented the three player quantum version of the `Dilemma' game as described by Johnson, [N.F. Johnson, Phys. Rev. A 63 (2001) 020302(R)] using nuclear magnetic resonance quantum information processor and have experimentally verified that the payoff of the quantum game for various levels of corruption matches the theoretical payoff. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The traditional 'publish for free and pay to read' business model adopted by publishers of academic journals can lead to disparity in access to scholarly literature, exacerbated by rising journal costs and shrinking library budgets. However, although the 'pay to publish and read for free' business model of open-access publishing has helped to create a level playing field for readers, it does more harm than good in the developing world.
Resumo:
In this article, the problem of two Unmanned Aerial Vehicles (UAVs) cooperatively searching an unknown region is addressed. The search region is discretized into hexagonal cells and each cell is assumed to possess an uncertainty value. The UAVs have to cooperatively search these cells taking limited endurance, sensor and communication range constraints into account. Due to limited endurance, the UAVs need to return to the base station for refuelling and also need to select a base station when multiple base stations are present. This article proposes a route planning algorithm that takes endurance time constraints into account and uses game theoretical strategies to reduce the uncertainty. The route planning algorithm selects only those cells that ensure the agent will return to any one of the available bases. A set of paths are formed using these cells which the game theoretical strategies use to select a path that yields maximum uncertainty reduction. We explore non-cooperative Nash, cooperative and security strategies from game theory to enhance the search effectiveness. Monte-Carlo simulations are carried out which show the superiority of the game theoretical strategies over greedy strategy for different look ahead step length paths. Within the game theoretical strategies, non-cooperative Nash and cooperative strategy perform similarly in an ideal case, but Nash strategy performs better than the cooperative strategy when the perceived information is different. We also propose a heuristic based on partitioning of the search space into sectors to reduce computational overhead without performance degradation.
Resumo:
In this thesis work, we design rigorous and efficient protocols/mechanisms for different types of wireless networks using a mechanism design [1] and game theoretic approach [2]. Our work can broadly be viewed in two parts. In the first part, we concentrate on ad hoc wireless networks [3] and [4]. In particular, we consider broadcast in these networks where each node is owned by independent and selfish users. Being selfish, these nodes do not forward the broadcast packets. All existing protocols for broadcast assume that nodes forward the transit packets. So, there is need for developing new broadcast protocols to overcome node selfishness. In our paper [5], we develop a strategy proof pricing mechanism which we call immediate predecessor node pricing mechanism (IPNPM) and an efficient new broadcast protocol based on IPNPM. We show the efficacy of our proposed broadcast protocol using simulation results.