176 resultados para GENERALIZED 2ND LAW
Resumo:
The Generalized Distributive Law (GDL) is a message passing algorithm which can efficiently solve a certain class of computational problems, and includes as special cases the Viterbi's algorithm, the BCJR algorithm, the Fast-Fourier Transform, Turbo and LDPC decoding algorithms. In this paper GDL based maximum-likelihood (ML) decoding of Space-Time Block Codes (STBCs) is introduced and a sufficient condition for an STBC to admit low GDL decoding complexity is given. Fast-decoding and multigroup decoding are the two algorithms used in the literature to ML decode STBCs with low complexity. An algorithm which exploits the advantages of both these two is called Conditional ML (CML) decoding. It is shown in this paper that the GDL decoding complexity of any STBC is upper bounded by its CML decoding complexity, and that there exist codes for which the GDL complexity is strictly less than the CML complexity. Explicit examples of two such families of STBCs is given in this paper. Thus the CML is in general suboptimal in reducing the ML decoding complexity of a code, and one should design codes with low GDL complexity rather than low CML complexity.
Resumo:
The problem of designing good space-time block codes (STBCs) with low maximum-likelihood (ML) decoding complexity has gathered much attention in the literature. All the known low ML decoding complexity techniques utilize the same approach of exploiting either the multigroup decodable or the fast-decodable (conditionally multigroup decodable) structure of a code. We refer to this well-known technique of decoding STBCs as conditional ML (CML) decoding. In this paper, we introduce a new framework to construct ML decoders for STBCs based on the generalized distributive law (GDL) and the factor-graph-based sum-product algorithm. We say that an STBC is fast GDL decodable if the order of GDL decoding complexity of the code, with respect to the constellation size, is strictly less than M-lambda, where lambda is the number of independent symbols in the STBC. We give sufficient conditions for an STBC to admit fast GDL decoding, and show that both multigroup and conditionally multigroup decodable codes are fast GDL decodable. For any STBC, whether fast GDL decodable or not, we show that the GDL decoding complexity is strictly less than the CML decoding complexity. For instance, for any STBC obtained from cyclic division algebras which is not multigroup or conditionally multigroup decodable, the GDL decoder provides about 12 times reduction in complexity compared to the CML decoder. Similarly, for the Golden code, which is conditionally multigroup decodable, the GDL decoder is only half as complex as the CML decoder.
Resumo:
The problem of designing good Space-Time Block Codes (STBCs) with low maximum-likelihood (ML) decoding complexity has gathered much attention in the literature. All the known low ML decoding complexity techniques utilize the same approach of exploiting either the multigroup decodable or the fast-decodable (conditionally multigroup decodable) structure of a code. We refer to this well known technique of decoding STBCs as Conditional ML (CML) decoding. In [1], we introduced a framework to construct ML decoders for STBCs based on the Generalized Distributive Law (GDL) and the Factor-graph based Sum-Product Algorithm, and showed that for two specific families of STBCs, the Toepltiz codes and the Overlapped Alamouti Codes (OACs), the GDL based ML decoders have strictly less complexity than the CML decoders. In this paper, we introduce a `traceback' step to the GDL decoding algorithm of STBCs, which enables roughly 4 times reduction in the complexity of the GDL decoders proposed in [1]. Utilizing this complexity reduction from `traceback', we then show that for any STBC (not just the Toeplitz and Overlapped Alamouti Codes), the GDL decoding complexity is strictly less than the CML decoding complexity. For instance, for any STBC obtained from Cyclic Division Algebras that is not multigroup or conditionally multigroup decodable, the GDL decoder provides approximately 12 times reduction in complexity compared to the CML decoder. Similarly, for the Golden code, which is conditionally multigroup decodable, the GDL decoder is only about half as complex as the CML decoder.
Resumo:
We deal with a single conservation law with discontinuous convex-concave type fluxes which arise while considering sign changing flux coefficients. The main difficulty is that a weak solution may not exist as the Rankine-Hugoniot condition at the interface may not be satisfied for certain choice of the initial data. We develop the concept of generalized entropy solutions for such equations by replacing the Rankine-Hugoniot condition by a generalized Rankine-Hugoniot condition. The uniqueness of solutions is shown by proving that the generalized entropy solutions form a contractive semi-group in L-1. Existence follows by showing that a Godunov type finite difference scheme converges to the generalized entropy solution. The scheme is based on solutions of the associated Riemann problem and is neither consistent nor conservative. The analysis developed here enables to treat the cases of fluxes having at most one extrema in the domain of definition completely. Numerical results reporting the performance of the scheme are presented. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
The fluctuation of the distance between a fluorescein-tyrosine pair within a single protein complex was directly monitored in real time by photoinduced electron transfer and found to be a stationary, time-reversible, and non-Markovian Gaussian process. Within the generalized Langevin equation formalism, we experimentally determine the memory kernel K(t), which is proportional to the autocorrelation function of the random fluctuating force. K(t) is a power-law decay, t(-0.51 +/- 0.07) in a broad range of time scales (10(-3)-10 s). Such a long-time memory effect could have implications for protein functions.
Resumo:
The capturability of a realistic generalized true proportional navigation (RGTPN) guidance law, against a nonmaneuvering target, is analyzed. The RGTPN law is obtained by relaxing the somewhat unrealistic assumption of constant closing velocity, made in all earlier studies on generalized true proportional navigation (GTPN), and incorporating the actual time-varying value in the guidance law. Closed-form solutions for the complete capture region of RGTPN is obtained in terms of both zero and acceptable non-zero miss distances. It is shown that the capture region of RGTPN in the initial relative velocity space is significantly smaller than that of GTPN, for reasonable values of navigation constant (N) and angular direction (eta) of the missile commanded latax. However, for certain values of N and eta, capturability of RGTPN is found to be better. It is also shown that if in one of the versions of GTPN, which uses constant values of both the closing velocity and the line-of-sight (LOS) angular velocity in the guidance law, the corresponding realistic time-varying quantities are used, the capture region actually expands to cover the whole of the initial relative velocity space. A number of examples are given to compare the capture performance of RGTPN with other versions of the GTPN guidance laws.
Resumo:
Considering cement based composites as chemically bonded ceramics (CBC) the consequent strength development with age is essentially a constant volume solidification process, such that the hydrated gel particles fill the space resulting in the compatible gel space ratios. Analysis has been done of the extensively used graphical method of mix design (British method of mix design) i.e., the relation between the compressive strength and the free water - cement ratio. By considering the strength (S) at w/c 0.5 (S-0.5) as the reference state to reflect the synergetic effects between constituents of concrete a generalized relationship obtained is of the form {S/S-0.5} = a + b {1/(w/c)}.
Resumo:
We present a spin model, namely, the Kitaev model augmented by a loop term and perturbed by an Ising Hamiltonian, and show that it exhibits both confinement-deconfinement transitions from spin liquid to antiferromagnetic/spin-chain/ferromagnetic phases and topological quantum phase transitions between gapped and gapless spin-liquid phases. We develop a fermionic resonating-valence-bonds (RVB) mean-field theory to chart out the phase diagram of the model and estimate the stability of its spin-liquid phases, which might be relevant for attempts to realize the model in optical lattices and other spin systems. We present an analytical mean-field theory to study the confinement-deconfinement transition for large coefficient of the loop term and show that this transition is first order within such mean-field analysis in this limit. We also conjecture that in some other regimes, the confinement-deconfinement transitions in the model, predicted to be first order within the mean-field theory, may become second order via a defect condensation mechanism. Finally, we present a general classification of the perturbations to the Kitaev model on the basis of their effect on it's spin correlation functions and derive a necessary and sufficient condition, within the regime of validity of perturbation theory, for the spin correlators to exhibit a long-ranged power-law behavior in the presence of such perturbations. Our results reproduce those of Tikhonov et al. [Phys. Rev. Lett. 106, 067203 (2011)] as a special case.
Resumo:
Scaling behaviour has been observed at mesoscopic level irrespective of crystal structure, type of boundary and operative micro-mechanisms like slip and twinning. The presence of scaling at the meso-scale accompanied with that at the nano-scale clearly demonstrates the intrinsic spanning for different deformation processes and a true universal nature of scaling. The origin of a 1/2 power law in deformation of crystalline materials in terms of misorientation proportional to square root of strain is attributed to importance of interfaces in deformation processes. It is proposed that materials existing in three dimensional Euclidean spaces accommodate plastic deformation by one dimensional dislocations and their interaction with two dimensional interfaces at different length scales. This gives rise to a 1/2 power law scaling in materials. This intrinsic relationship can be incorporated in crystal plasticity models that aim to span different length and time scales to predict the deformation response of crystalline materials accurately.
Resumo:
A new method of selection of time-to-go (t(go)) for Generalized Vector Explicit Guidance (GENEX) law have been proposed in this paper. t(go) is known to be an important parameter in the control and cost function of GENEX guidance law. In this paper the formulation has been done to find an optimal value of t(go) that minimizes the performance cost. Mechanization of GENEX with this optimal t(go) reduces the lateral acceleration demand and consequently increases the range of the interceptor. This new formulation of computing t(go) comes in closed form and thus it can be implemented onboard. This new formulation is applied in the terminal phase of an surface-to-air interceptor for an angle constrained engagement. Results generated by simulation justify the use of optimal t(go).
Resumo:
Exact N-wave solutions for the generalized Burgers equation u(t) + u(n)u(x) + (j/2t + alpha) u + (beta + gamma/x) u(n+1) = delta/2u(xx),where j, alpha, beta, and gamma are nonnegative constants and n is a positive integer, are obtained. These solutions are asymptotic to the (linear) old-age solution for large time and extend the validity of the latter so as to cover the entire time regime starting where the originally sharp shock has become sufficiently thick and the viscous effects are felt in the entire N wave.
Resumo:
In this paper, we first recast the generalized symmetric eigenvalue problem, where the underlying matrix pencil consists of symmetric positive definite matrices, into an unconstrained minimization problem by constructing an appropriate cost function, We then extend it to the case of multiple eigenvectors using an inflation technique, Based on this asymptotic formulation, we derive a quasi-Newton-based adaptive algorithm for estimating the required generalized eigenvectors in the data case. The resulting algorithm is modular and parallel, and it is globally convergent with probability one, We also analyze the effect of inexact inflation on the convergence of this algorithm and that of inexact knowledge of one of the matrices (in the pencil) on the resulting eigenstructure. Simulation results demonstrate that the performance of this algorithm is almost identical to that of the rank-one updating algorithm of Karasalo. Further, the performance of the proposed algorithm has been found to remain stable even over 1 million updates without suffering from any error accumulation problems.
Resumo:
A method is presented for obtaining useful closed form solution of a system of generalized Abel integral equations by using the ideas of fractional integral operators and their applications. This system appears in solving certain mixed boundary value problems arising in the classical theory of elasticity.
Resumo:
No abstract is available.