53 resultados para Formative evaluation
Resumo:
Inventory Management (IM) plays a decisive role in the enhancement of efficiency and competitiveness of manufacturing enterprises. Therefore, major manufacturing enterprises are following IM practices as a strategy to improve efficiency and achieve competitiveness. However, the spread of IM culture among Small and Medium Enterprises (SMEs) is limited due to lack of initiation, expertise and financial limitations in developed countries, leave alone developing countries. With this backdrop, this paper makes an attempt to ascertain the role and importance of IM practices and performance of SMEs in the machine tools industry of Bangalore, India. The relationship between inventory management practices and inventory cost are probed based on primary data gathered from 91 SMEs. The paper brings out that formal IM practices have a positive impact on the inventory performance of SMEs.
Resumo:
Plasma sprayable powders were prepared from ZrO2-CaO-CeO2 system using an organic binder and coated onto stainless steel substrates previously coated by a bond coat (Ni 22Cr 20Al 1.0Y) using plasma spraying. The coatings exhibited good thermal barrier characteristics and excellent resistance to thermal shock at 1000 degrees C under simulated laboratory conditions (90 half hour cycles without failure) and at 1200 degrees C under accelerated burner rig test conditions (500 2 min cycles without failure). No destabilization of cubic/tetragonal ZrO2 phase fraction occured either during the long hours (45 h cumulative) or the large number of thermal shock tests. Growth of a distinct SiO2 rich region within the ceramic was observed in the specimens thermal shock cycled at 1000 degrees C apart from mild oxidation of the bond coat. The specimens tested at 1200 degrees C had a glassy appearance on the top surface and exhibited severe oxidation of the bond coat at the ceramic-bond coat interface. The glassy appearance of the surface is due to the formation of a liquid silicate layer attributable to the impurity phase present in commercial grade ZrO2 powder. These observations are supported by SEM analysis and quantitative EDAX data.
Resumo:
Three new (dialkylamino)pyridine (DAAP)-based ligand amphiphiles 3-5 have been synthesized. All of the compounds possess a metal ion binding subunit in the form of a 2,6-disubstituted DAAP moiety. In addition, at least one ortho-CH2OH substituent is present in all the ligands. Complex formation by these ligands with various metal ions were examined under micellar conditions, but only complexes with Cu(II) ions showed kinetically potent esterolytic capacities under micellar conditions. Complexes with Cu(II) were prepared in host comicellar cetyltrimethylammonium bromide (CTABr) media at pH 7.6. Individual complexes were characterized by UV-visible absorption spectroscopy and electron paramagnetic resonance spectroscopy. These metallomicelles speed the cleavage of the substrates p-nitrophenyl hexanoate or p-nitrophenyl diphenyl phosphate. To ascertain the nature of the active esterolytic species, the stoichiometries of the respective Cu(II) complexes were determined from the kinetic version of Job's plot. In all the instances, 2:1 complex ligand/Cu(II) ion are the most kinetically competent species. The apparent pK(a) values of the Cu(II)-coordinated hydroxyl groups of the ligands 3, 4, and 5, in the comicellar aggregate, are 7.8, 8.0, and 8.0, respectively, as estimated from the rate constant vs pH: profiles of the ester cleavage reactions. The nucleophilic metallomicellar reagents and the second-order "catalytic" rate constants toward esterolysis of the substrate p-nitrophenyl hexanoate (at 25 degrees C, pH 7.6) are 37.5 for 3, 11.4 for 4, and 13.8 for 5. All catalytic systems comprising the coaggregates of 3, 4, or 5 and CTABr demonstrate turnover behavior in the presence of excess substrate.
Resumo:
Silver/metal hydride (Ag/MH) cells of about 1 Ah capacity have been fabricated and their discharge characteristics at different rates of discharge, faradaic efficiency, cycle life and a.c. impedance have been evaluated. These cells comprise metal-hydride electrodes prepared by employing similar to 60 mu m powder of an AB(2)-Laves phase alloy of nominal composition Zr0.5Ti0.5V0.6Cr0.2Ni1.2 with PTFE binder on a nickel-mesh substrate as the negative plates and commercial-grade silver electrodes as the positive plates. The cells are positive limited and exhibit two distinct voltage plateaus characteristic of two-step reduction of AgO to Ag during their low rates of discharge between C/20 and C/10. This feature is, however, absent when the cells are discharged at C/5 rate. On charging the cells to 100% of their capacity, the faradaic efficiency is found to be 100%. The impedance of the Ag/MH cell is essentially due to the impedance of the silver electrodes, since MH electrodes offer negligible impedance. The cells may be subjected to a large number of charge-discharge cycles with little deterioration.
Resumo:
An oxovanadium(IV) complex of dipyridophenazine, as a potent metal-based PDT agent, shows efficient DNA photocleavage activity at near-IR region and high photocytotoxicity in both UV-A and visible light in HeLa cells.
Resumo:
In order to explore the anticancer effect associated with the thiazolidinone framework, several 2-(5-((5-(4-chlorophenyl)furan-2-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid derivatives 5(a-1) were synthesized. Variation in the functional group at C-terminal of the thiazolidinone led to set of compounds bearing amide moiety. Their chemical structures were confirmed by H-1 NMR, IR and Mass Spectra analysis. These thiazolidinone compounds containing furan moiety exhibits moderate to strong antiproliferative activity in a cell cycle stage-dependent and dose dependent manner in two different human leukemia cell lines. The importance of the electron donating groups on thiazolidinone moiety was confirmed by MTT and Trypan blue assays and it was concluded that the 4th position of the substituted aryl ring plays a dominant role for its anticancer property. Among the synthesized compounds, 5e and 5f have shown potent anticancer activity on both the cell lines tested. To rationalize the role of electron donating group in the induction of cytotoxicity we have chosen two molecules (5e and 5k) having different electron donating group at different positions. LDH assay, Flow cytometric analysis and DNA fragmentation suggest that 5e is more cytotoxic and able to induce the apoptosis. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents three methodologies for determining optimum locations and magnitudes of reactive power compensation in power distribution systems. Method I and Method II are suitable for complex distribution systems with a combination of both radial and ring-main feeders and having different voltage levels. Method III is suitable for low-tension single voltage level radial feeders. Method I is based on an iterative scheme with successive powerflow analyses, with formulation and solution of the optimization problem using linear programming. Method II and Method III are essentially based on the steady state performance of distribution systems. These methods are simple to implement and yield satisfactory results comparable with the results of Method I. The proposed methods have been applied to a few distribution systems, and results obtained for two typical systems are presented for illustration purposes.
Resumo:
A simple cconversence technique is applied to obtain accurate estimates of critical temperatures and critical it\ponmts of a few two- and threpdiniensional king models. When applied to the virial series for hard spheres and hard discs, this method predicts a divergence of the equation-of-state at the density of closest packing.
Resumo:
Formative time lags in nitrogen, oxygen, and dry air are measured with and without a magnetic field over a range of gas pressures (0.05 ' p ' 20.2 torr 5 kPa to 2 MPa, electric field strengths (1.8xO14 EEs 60xlO V m l) and magnetic field strengths (85xl0-4 < B ' 16x10-2 Tesla). For experiments below the Paschen minimum, the electrodes are designed to ensure that breakdown occurs over longer gaps and for experiments above the Paschen minimum, a coaxial cylindrical system is employed. The experimental technique consists of applying pulse voltages to the gap at various constant values of E/p and B/p and measuring the time lags from which the formative time lags are separated. In the gases studed, formative time lags decrease on application of a magnetic field at a given pressure for conditions below the Paschen minimum. The voltages at which the formative time lags remain the same without and with magnetic fields are determined, and electron molecule collision frequencies (v/p) are determined using the Effective Reduced Electric Field [EREF] concept. With increasing ratio of E/p in crossed fields, v/p decreases in all the three gases. Measurements above the Paschen minimum yield formative time lags which increase on application of a magnetic field. Formative time lags in nitrogen in ExB fields are calculated assuming an average collision frequency of 8.5x109 sec-1 torr 1. It is concluded that the EREF concept can be applied to explain formative time lags in ExB fields.
Resumo:
In this paper, the design and implementation of a single shared bus, shared memory multiprocessing system using Intel's single board computers is presented. The hardware configuration and the operating system developed to execute the parallel algorithms are discussed. The performance evaluation studies carried out on Image are outlined.
Resumo:
An exact expression for the calculation of gaussian path integrals involving non-local potentials is given. Its utility is demonstrated by using it to evaluate a path integral arising in the study of an electron gas in a random potential.
Resumo:
Concurrency control (CC) algorithms are important in distributed database systems to ensure consistency of the database. A number of such algorithms are available in the literature. The issue of performance evaluation of these algorithms has been recognized to be important. However, only a few studies have been carried out towards this. This paper deals with the performance evaluation of a CC algorithm proposed by Rosenkrantz et al. through a detailed simulation study. In doing so, the algorithm has been modified so that it can, within itself, take care of the redundancy in the database. The influences of various system parameters and the transaction profile on the response time and on the degree of conflict are considered. The entire study has been carried out using the programming language SIMULA on a DEC-1090 system.
Resumo:
The paper presents a method for transmission loss charge allocation in deregulated power systems based on Relative Electrical Distance (RED) concept. Based on RED between the generator and load nodes and the predefined bilateral power contracts, charge evaluation is carried out. Generally through some power exchange mechanism a set of bilateral contracts are determined that facilitate bilateral agreements between the generation and distribution entities. In this paper the possible charges incurred in meeting loads like generation charge, transmission charge and charge due to losses are evaluated. Case studies have been carried out on a few practical equivalent systems. Due to space limitation results for a sample 5 bus system are presented considering ideal load/generation power contracts and deviated load/generation power contracts. Extensive numerical testing indicates that the proposed allocation scheme produces loss allocations that are appropriate and that behave in a physically reasonable manner.
Resumo:
The diffusion coefficient, D, and the ionic mobility, μ, in the protonic conductor ammonium ferrocyanide hydrate have been determined by the isothermal transient ionic current method. D is also determined from the time dependence of the build up of potential across the samples and theretical expressions describing this build up in terms of double exponential dependence on time are obtained. The values obtained are D=3.875×10−11m2s−1 and μ=1.65×10−9 m2V−1s−1.