257 resultados para Finite Chian Rings


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given a function from Z(n) to itself one can determine its polynomial representability by using Kempner function. In this paper we present an alternative characterization of polynomial functions over Z(n) by constructing a generating set for the Z(n)-module of polynomial functions. This characterization results in an algorithm that is faster on average in deciding polynomial representability. We also extend the characterization to functions in several variables. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report a theoretical formulation for the mean cluster size distribution in a finite polycondensing system. Expressions for the mean number of n-mers with j bonds ( nj) are developed. Numerical calculations show that while the non-cyclic molecules make the dominant contribution to the small clusters, the large clusters are dominated by cyclic structures. The number of particles in ringless chains, n n,n-1, decays monotonically with n at all extents of reaction, but n n becomes bimodal near the gel point. We also find that the solvent plays an important role in the cluster size distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A public key cryptosystem is proposed, which is based on the assumption that finding the square root of an element in a large finite ring is computationally infeasible in the absence of a knowledge of the ring structure. The encryption and decryption operations are very fast, and the data expansion is 1:2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let S be a simplicial affine semigroup such that its semigroup ring A = k[S] is Buchsbaum. We prove for such A the Herzog-Vasconcelos conjecture: If the A-module Der(k)A of k-linear derivations of A has finite projective dimension then it is free and hence A is a polynomial ring by the well known graded case of the Zariski-Lipman conjecture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The setting considered in this paper is one of distributed function computation. More specifically, there is a collection of N sources possessing correlated information and a destination that would like to acquire a specific linear combination of the N sources. We address both the case when the common alphabet of the sources is a finite field and the case when it is a finite, commutative principal ideal ring with identity. The goal is to minimize the total amount of information needed to be transmitted by the N sources while enabling reliable recovery at the destination of the linear combination sought. One means of achieving this goal is for each of the sources to compress all the information it possesses and transmit this to the receiver. The Slepian-Wolf theorem of information theory governs the minimum rate at which each source must transmit while enabling all data to be reliably recovered at the receiver. However, recovering all the data at the destination is often wasteful of resources since the destination is only interested in computing a specific linear combination. An alternative explored here is one in which each source is compressed using a common linear mapping and then transmitted to the destination which then proceeds to use linearity to directly recover the needed linear combination. The article is part review and presents in part, new results. The portion of the paper that deals with finite fields is previously known material, while that dealing with rings is mostly new.Attempting to find the best linear map that will enable function computation forces us to consider the linear compression of source. While in the finite field case, it is known that a source can be linearly compressed down to its entropy, it turns out that the same does not hold in the case of rings. An explanation for this curious interplay between algebra and information theory is also provided in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Edge cracked specimens have been widely utilized for fracture testing. Edge cracked semicircular disk (ECSD) specimen has now been well characterized with regard to its form factor and weight function. This paper presents a modified semicircular ring version of this specimen to enhance the form factor in general while retaining other desirable features. The efficacy of the modified design is proved by combining theory of elasticity solutions with finite element results to arrive at the optimum design geometry. New insights emerging from this work are used to theoretically re-examine the arch-tension and the four-point bend specimens. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let R be a (commutative) local principal ideal ring of length two, for example, the ring R = Z/p(2)Z with p prime. In this paper, we develop a theory of normal forms for similarity classes in the matrix rings M-n (R) by interpreting them in terms of extensions of R t]-modules. Using this theory, we describe the similarity classes in M-n (R) for n <= 4, along with their centralizers. Among these, we characterize those classes which are similar to their transposes. Non-self-transpose classes are shown to exist for all n > 3. When R has finite residue field of order q, we enumerate the similarity classes and the cardinalities of their centralizers as polynomials in q. Surprisingly, the polynomials representing the number of similarity classes in M-n (R) turn out to have non-negative integer coefficients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A plane strain elastic interaction analysis of a strip footing resting on a reinforced soil bed has been made by using a combined analytical and finite element method (FEM). In this approach the stiffness matrix for the footing has been obtained using the FEM, For the reinforced soil bed (halfplane) the stiffness matrix has been obtained using an analytical solution. For the latter, the reinforced zone has been idealised as (i) an equivalent orthotropic infinite strip (composite approach) and (ii) a multilayered system (discrete approach). In the analysis, the interface between the strip footing and reinforced halfplane has been assumed as (i) frictionless and (ii) fully bonded. The contact pressure distribution and the settlement reduction have been given for different depths of footing and scheme of reinforcement in soil. The load-deformation behaviour of the reinforced soil obtained using the above modelling has been compared with some available analytical and model test results. The equivalent orthotropic approach proposed in this paper is easy to program and is shown to predict the reinforcing effects reasonably well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a generalization of the finite volume evolution Galerkin scheme [M. Lukacova-Medvid'ova,J. Saibertov'a, G. Warnecke, Finite volume evolution Galerkin methods for nonlinear hyperbolic systems, J. Comp. Phys. (2002) 183 533-562; M. Luacova-Medvid'ova, K.W. Morton, G. Warnecke, Finite volume evolution Galerkin (FVEG) methods for hyperbolic problems, SIAM J. Sci. Comput. (2004) 26 1-30] for hyperbolic systems with spatially varying flux functions. Our goal is to develop a genuinely multi-dimensional numerical scheme for wave propagation problems in a heterogeneous media. We illustrate our methodology for acoustic waves in a heterogeneous medium but the results can be generalized to more complex systems. The finite volume evolution Galerkin (FVEG) method is a predictor-corrector method combining the finite volume corrector step with the evolutionary predictor step. In order to evolve fluxes along the cell interfaces we use multi-dimensional approximate evolution operator. The latter is constructed using the theory of bicharacteristics under the assumption of spatially dependent wave speeds. To approximate heterogeneous medium a staggered grid approach is used. Several numerical experiments for wave propagation with continuous as well as discontinuous wave speeds confirm the robustness and reliability of the new FVEG scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An electromagnetically coupled feed arrangement is proposed for simultaneously exciting multiple concentric ring antennas for multi-frequency operation. This has a multi-layer dielectric configuration in which a transmission line is embedded below the layer containing radiating rings. Energy coupled to these rings from the line beneath is optimised by suitably adjusting the location and dimensions of stubs on the line. It has been shown that the resonant frequencies of these rings do not change as several of these single-frequency antennas are combined to form a multi-resonant antenna. Furthermore, all radiators are forced to operate at their primary mode and some harmonics of the lower resonant frequency rings appearing within the frequency range are suppressed when combined. The experimental prototype antenna has three resonant frequencies at which it has good radiation characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lasers are very efficient in heating localized regions and hence they find a wide application in surface treatment processes. The surface of a material can be selectively modified to give superior wear and corrosion resistance. In laser surface-melting and welding problems, the high temperature gradient prevailing in the free surface induces a surface-tension gradient which is the dominant driving force for convection (known as thermo-capillary or Marangoni convection). It has been reported that the surface-tension driven convection plays a dominant role in determining the melt pool shape. In most of the earlier works on laser-melting and related problems, the finite difference method (FDM) has been used to solve the Navier Stokes equations [1]. Since the Reynolds number is quite high in these cases, upwinding has been used. Though upwinding gives physically realistic solutions even on a coarse grid, the results are inaccurate. McLay and Carey have solved the thermo-capillary flow in welding problems by an implicit finite element method [2]. They used the conventional Galerkin finite element method (FEM) which requires that the pressure be interpolated by one order lower than velocity (mixed interpolation). This restricts the choice of elements to certain higher order elements which need numerical integration for evaluation of element matrices. The implicit algorithm yields a system of nonlinear, unsymmetric equations which are not positive definite. Computations would be possible only with large mainframe computers.Sluzalec [3] has modeled the pulsed laser-melting problem by an explicit method (FEM). He has used the six-node triangular element with mixed interpolation. Since he has considered the buoyancy induced flow only, the velocity values are small. In the present work, an equal order explicit FEM is used to compute the thermo-capillary flow in the laser surface-melting problem. As this method permits equal order interpolation, there is no restriction in the choice of elements. Even linear elements such as the three-node triangular elements can be used. As the governing equations are solved in a sequential manner, the computer memory requirement is less. The finite element formulation is discussed in this paper along with typical numerical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The details of development of the stiffness matrix for a doubly curved quadrilateral element suited for static and dynamic analysis of laminated anisotropic thin shells of revolution are reported. Expressing the assumed displacement state over the middle surface of the shell as products of one-dimensional first order Hermite polynomials, it is possible to ensure that the displacement state for the assembled set of such elements, is geometrically admissible. Monotonic convergence of total potential energy is therefore possible as the modelling is successively refined. Systematic evaluation of performance of the element is conducted, considering various examples for which analytical or other solutions are available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents the results of an experimental study regarding the effect of the lateral dimension of the receiving water on the spreading, mixing, and temperature decay of a horizontal buoyant surface jet. The widths of the ambient water in the experiments have been 240, 120, 90 and 60 times the diameter of the jet nozzle. Based on the experimental data, correlations are carried out and empirical equations for prediction of jet width, thickness in vertical direction and longitudinal temperature decay are obtained. The available data of earlier investigators are included to obtain generalized equations for the spreading and temperature decay. Similarity of temperature profiles in the lateral and vertical directions is observed. The longitudinal temperature decay is found to vary inversely with distance in the flow direction and ¼th power of the densimetric Froude number.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An expression is derived for the probability that the determinant of an n x n matrix over a finite field vanishes; from this it is deduced that for a fixed field this probability tends to 1 as n tends to.