52 resultados para Fine Particulates
Resumo:
Attempts to prepare BaSnO3 by the hydrothermal method starting from SnO2·xH2O gel and Ba (OH)2 solution in teflonlined autoclaves at 150–260°C invariably lead to the formation of a hydrated phase, BaSn(OH)6·3H2O. On heating in air or on releasing the pressure Image at ≈260°C, BaSN (OH)6·3H2O converts to BaSnO3 fine powder which involves the formation of an intermediate oxyhydroxide, BaSnO(OH)4. TEM studies show that particle size of the resulting BaSnO3 ranges from 0.2–0.6 μm. Solid solutions of Ba(Ti, Sn) O3 were prepared from (TiO2+SnO2)·xH2O mixed gel and Ba(OH)2 solutions. Single-phase perovskite Ba(Ti, Sn)O3 was obtained up to 35 atom % Sn. Above this composition, the hydrothermal products are mixtures of BaTiO3 (cubic) and BaSn(OH)6·3H2O which on heating at ≈260°C give rise to BaTiO3+BaSnO3. Annealing at 1000°C results in monophasic Ba(Ti, Sn)O3, in the complete range of Sn/Ti. Formation of the hydrated phase is attributed to the amphoteric nature of SnO2·xH2O gel which stabilises Sn(OH)62− anions under higher H2O-pressures and elevated temperatures. The sintering characteristics and dielectric properties of ceramics prepared from these fine powders are presented.
Resumo:
Fine powders consisting of 0.1–0.5 μm size crystallites of CaTiO3 are prepared at 150–200°C by the hydrothermal method starting from hydrated titania gel and reactive calcium oxide suspended as an aqueous slurry in an autoclave. The resulting high-purity CaTiO3 is characterised by TEM, X-ray powder diffraction, chemical analyses and sintering characteristics. The hydrothermally prepared CaTiO3 powders are sinterable to high-density ceramics below 1400°C. The dc conductivity behaviour of the chemically reduced ceramics is presented.
Resumo:
Fine powders consisting of aggregated submicron crystallites of Ba(Ti,Zr)O3 in the complete range of Ti/Zr ratios are prepared at 85–130°C by hydrothermal method, starting from TiO2 + ZrO2 · xH2O mixed gel and Ba(OH)2 solution. The products obtained below 110°C incorporate considerable amounts of H2O and OH− within the lattice. As-prepared BaTiO3 is cubic and converts to tetragonal phase after the heat treatment at 1200°C, accompanied by the loss of residual hydroxyl ions. TEM investgations of the growth features show a transformation of the gel to the crystallite. Ba2+ ions entering the gel produce chemical changes within the gel, followed by dehydration, resulting in a cubic perovskite phase irrespective of Ti/Zr. The sintering properties of these powders to fine-grained, high density ceramics and their dielectric properties are presented.
Resumo:
Fine powders of submicron-sized crystallites of BaTiO3 were prepared at 85–130°C by the hydrothermal method, starting from TiO2.ξH2O gel and Ba(OH)2 solution. The products obtained below 110°C incorporated considerable amounts of H2O and OH− in the lattice. As-prepared BaTiO3 is cubic and converts to the tetragonal phase after heat treatment at 1200°C, accompanied by the loss of residual OH− ions. Hydrothermal reaction of SnO2.ξH2O gel with Ba(OH)2 at 150–260°C gives rise to the hydrated phase, BaSn(OH)6.3H2O, due to the amphoteric nature of SnO2.ξH2O which stabilises Sn(OH)62− anions in basic media. On heating in air or releasing the pressure in situ at 260°C, BaSn(OH)6.3H2O converts to BaSnO3 through an intermediate, BaSnO(OH)4. Solid solutions of Ba(Ti,Sn)O3 are directly formed from (TiO2 + SnO2)..ξH2O gel up to 35 mol% SnO2. At higher Sn contents, the hydrothermal products are mixtures of BaSn(OH)6.3H2O and BaTiO3, which on annealing at 1000°C result in monophasic Ba(Ti,Sn)O3. The sintering characteristics and the dielectric properties of the ceramics prepared out of these fine powders are presented. The dielectric properties of fine-grained Ba(Ti,Sn)O3 ceramics are explained on the basis of the prevailing diffuse phase transition behaviour.
Resumo:
Plastic limit of fine-grained soils is conventionally determined in the laboratory by the soil thread rolling method. Many adverse comments have been recorded in the geotechnical engineering literature on the method about its reproducibility and operator dependency. The presen experimental study, which is based on a well-planned and meticulously executed experimental program, critically evaluates the effect of size of the rolled soil thread on the plastic limit of fine-grained soil and the operator dependency of the results. The results have shown that if the plastic limit tests are performed by a trained operator, then consistent results can be obtained and that the effect of size of the rolled soil thread on plastic limit is negligibly small.
Resumo:
A novel solid-solution precursor method for the preparation of fine-particle cobaltites at low temperatures has been described. The precursors, hydrazinium metal hydrazine carboxylate hydrates, N2H5M1/3Co2/3(N2H3COO)3 · H2O, where M = Mg, Mn, Fe, Co, Ni, and Zn, decompose in air <250°C to yield corresponding metal cobaltites, MCo2O4. Formation of cobaltites has been confirmed by thermogravimetry (TG) weight loss, IR, and X-ray diffraction. Combustion of the precursor in air yields fine-particle cobaltites with surface areas in the range of 12–115 m2g−1 and particle sizes of 1–40 μm. Low decomposition temperatures of the precursors accompanied by the evolution of large amounts of gases appear to control the particle size of the cobaltites.
Resumo:
Synthesis of fine particle α-alumina and related oxide materials such as MgAl2O4, CaAl2O4, Y3Al5O12 (YAG), Image , β′-alumina, LaAlO3 and ruby powder (Image ) has been achieved at low temperatures (500°C) by the combustion of corresponding metal nitrate-urea mixtures. Solid combustion products have been identified by their characteristic X-ray diffraction patterns. The fine particle nature of α-alumina and related oxide materials has been investigated using SEM, TEM, particle size analysis and surface area measurements.
Resumo:
Fine powders of TiO2 (rutile) with high degree of crystallinity are formed from aqueous titanium oxychloride solution under hydrothermal conditions at 160–230°C and 15–100 kg/cm2 for 1–2 hours. The anatase phase is produced from the same medium when sulfate ion impurity is present, with Image . Both these fine powders are converted to BaTiO3, SrTiO3 or CaTiO3 when suspended in Ba(OH)2 or Sr(OH)2 solution or in an aqueous slurry of carbonate-free CaO with Image , at 180–280°C and 12–65 kg/cm2 for 4–8 hours. The resulting fine powders contain monocrystallites of the perovskite phase with 0.1–1.5 μm particle size.
Resumo:
The often discussed role of surface hydroxylation of TiO2 particles as an essential characterestics for their photocatalytic activity can be verified by preparing TiO2 powders by hydrothermal method since hydroxylated surface layers will be better retained on these particles formed in superheated water. Thus, fine powders of TiO2 (rutile) with high degree of crystallinity are formed from titanium oxychloride in the mixed solvent of water and 2-propanol at 160–230°C and 20–120 atm. The anatase phase is produced from the same medium when sulfate ion impurity is present, with Image . TiO2 powders are washed free of anions and 2-propanol by ultrafiltration and are Pt mounted by a photochemical method. Aqueous suspensions of both forms of TiO2 neither as such nor after Pt-loading, do not produce H2 on band gap illumination whereas, H2 is generated in presence of hole scavengers such as EDTA, TEOA, sulfite or hypophosphite. The effects of hole scavenger concentration, Pt : TiO2 ratio, particulate suspension density and the nature of hole scavengers on H2 production are presented. Platinised rutile powders are equally active as anatase in sacrificial systems.
Resumo:
The oxidation of sodium sulphide in the presence of fine activated carbon particles (4.33 μm) has been studied at 75°C in a foam bed contactor. The existing single-stage model of a foam bed reactor has been modified to take into account the effect of heterogeneous catalyst particles and the absorption in the storage section. The variables studied are catalyst loading, initial sulphide concentration and the average liquid hold-up in the foam bed. It is seen that the rates of oxidation of sodium sulphide are considerably enhanced by an increase in the loading of activated carbon particles. The rate of conversion of sodium sulphide also increases with an increase in the average liquid hold-up in the foam. The modified model predicts these effects fairly well. The contribution of reaction in the storage section is found to be less than 2% of the overall rate of conversion in the contactor.
Resumo:
Investigations have been carried out of some aspects of the fine-scale structure of turbulence in grid flows, in boundary layers in a zero pressure gradient and in a boundary layer in a strong favourable pressure gradient leading to relaminarization. Using a narrow-band filter with suitable mid-band frequencies, the properties of the fine-scale structure (appearing as high frequency pulses in the filtered signal) were analysed using the variable discriminator level technique employed earlier by Rao, Narasimha & Badri Narayanan (1971). It was found that, irrespective of the type of flow, the characteristic pulse frequency (say Np) defined by Rao et al. was about 0·6 times the frequency of the zero crossings. It was also found that, over the small range of Reynolds numbers tested, the ratio of the width of the fine-scale regions to the Kolmogorov scale increased linearly with Reynolds number in grid turbulence as well as in flat-plate boundarylayer flow. Nearly lognormal distributions were exhibited by this ratio as well as by the interval between successive zero crossings. The values of Np and of the zero-crossing rate were found to be nearly constant across the boundary layer, except towards its outer edge and very near the wall. In the zero-pressure-gradient boundary-layer flow, very near the wall the high frequency pulses were found to occur mostly when the longitudinal velocity fluctuation u was positive (i.e. above the mean), whereas in the outer part of the boundary layer the pulses more often occurred when u was negative. During acceleration this correlation between the fine-scale motion and the sign of u was less marked.
Resumo:
Soils in and and semi-arid zones undergoes volume changes due to wetting. Depending upon the type of clay minerals present, degree of saturation, externally applied load and bonding, the fine grained soils either swells or compresses. One of the parameter that affects the volume change behaviour is the primary clay mineral present in their clay size fraction. A simple method of identifying the same has been presented. It has been brought out that in an expansive unsaturated undisturbed soil, the diffuse double layer repulsion, the stress state and the bonding play significant role in their volume change behaviour. In non-expansive fine grained unsaturated undisturbed soils, the shearing resistance at particle level (including the matrix suction and bonding) and fabric play a significant role in influencing the volume change behaviour. While both the mechanism co-exist, one of them play a dominant role depending upon the primary clay mineral is swelling or non swelling.
Resumo:
As is well known, when monochromatic light scattered by a liquid is examined under high resolution it exhibits a fine structure: an undisplaced central line and two lines on either side with wavelengths slightly different from that of the incident light. The appearance of the displaced components was first predicted by Brillouin1. On the basis of his theory, the observed displacements of frequency are regarded as a Doppler effect arising from the reflexion of the light wave by the progressive sound waves of thermal origin in the scattering medium. The frequency shift of the so-called Brillouin components is given by the formula where nu and c are the velocities of sound and light in the medium and theta is the angle of scattering. That the effect contemplated by Brillouin does arise in liquids and crystals is now a well-established experimental fact.
Resumo:
Herein are reported the results of an investigation on the effective angle of interfacial friction between fine-grained soils and solid surfaces as influenced by the roughness of the material surface, the soil type and the overconsolidation ratio. The ratio of interfacial friction angle to the angle of internal friction (evaluated at constant overconsolidation ratio) of the soil is independent of the overconsolidation ratio. An empirical correlation between this ratio and the roughness of the interface has been proposed.
Resumo:
A detailed evaluation of size, shape and microstrains of BaTiO3 crystallites produced by hydrothermal crystallization at 90 – 180 °C and 0.1 – 1.2 MPa, from amorphous TiO2· xH2O (3 < × < 8) gel and aqueous Ba(OH)2 is presented, using X-ray line-broadening and TEM studies. Whereas the concentration of Ba(OH)2 and the acceptor impurities affect the crystallite shape, the stoichimetry with respect to Ba/Ti, donor as well as acceptor impurities, and the temperature of crystallization influence the microstrains. It is shown that strains in the crystallites are related to the point defects in the lattice. Compensation of the residually present hydroxyl ions in the oxygen sublattice by cation vacancies results in strains leading to metastable presence of the cubic phase at room temperature. Studies on the diffuse phase transition behaviour of these submicron powders show that the stable tetragonal phase is produced only on annealing at high temperatures where the mobility of cations vacancies are larger. Heat-treatment reduces anisotropy and strain in undoped samples, whereas annealing is less effective in doped materials. Comparison of the crystillite size by TEM showed better agreement with the Warren—Averbach method.