43 resultados para Fault detection and diagnostics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A scheme for the detection and isolation of actuator faults in linear systems is proposed. A bank of unknown input observers is constructed to generate residual signals which will deviate in characteristic ways in the presence of actuator faults. Residual signals are unaffected by the unknown inputs acting on the system and this decreases the false alarm and miss probabilities. The results are illustrated through a simulation study of actuator fault detection and isolation in a pilot plant doubleeffect evaporator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FDDI (Fibre Distributed Data Interface) is a 100 Mbit/s token ring network with two counter rotating optical rings. In this paper various possible faults (like lost token, link failures, etc.) are considered, and fault detection and the ring recovery process in case of a failure and the reliability mechanisms provided are studied. We suggest a new method to improve the fault detection and ring recovery process. The performance improvement in terms of station queue length and the average delay is compared with the performance of the existing fault detection and ring recovery process through simulation. We also suggest a modification for the physical configuration of the FDDI networks within the guidelines set by the standard to make the network more reliable. It is shown that, unlike the existing FDDI network, full connectivity is maintained among the stations even when multiple single link failures occur. A distributed algorithm is proposed for link reconfiguration of the modified FDDI network when many successive as well as simultaneous link failures occur. The performance of the modified FDDI network under link failures is studied through simulation and compared with that of the existing FDDI network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measured health signals incorporate significant details about any malfunction in a gas turbine. The attenuation of noise and removal of outliers from these health signals while preserving important features is an important problem in gas turbine diagnostics. The measured health signals are a time series of sensor measurements such as the low rotor speed, high rotor speed, fuel flow, and exhaust gas temperature in a gas turbine. In this article, a comparative study is done by varying the window length of acausal and unsymmetrical weighted recursive median filters and numerical results for error minimization are obtained. It is found that optimal filters exist, which can be used for engines where data are available slowly (three-point filter) and rapidly (seven-point filter). These smoothing filters are proposed as preprocessors of measurement delta signals before subjecting them to fault detection and isolation algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new scheme for robust estimation of the partial state of linear time-invariant multivariable systems is presented, and it is shown how this may be used for the detection of sensor faults in such systems. We consider an observer to be robust if it generates a faithful estimate of the plant state in the face of modelling uncertainty or plant perturbations. Using the Stable Factorization approach we formulate the problem of optimal robust observer design by minimizing an appropriate norm on the estimation error. A logical candidate is the 2-norm, corresponding to an H�¿ optimization problem, for which solutions are readily available. In the special case of a stable plant, the optimal fault diagnosis scheme reduces to an internal model control architecture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents a new approach to improve the detection and tracking performance of a track-while-scan (TWS) radar. The contribution consists of three parts. In Part 1 the scope of various papers in this field is reviewed. In Part 2, a new approach for integrating the detection and tracking functions is presented. It shows how a priori information from the TWS computer can be used to improve detection. A new multitarget tracking algorithm has also been developed. It is specifically oriented towards solving the combinatorial problems in multitarget tracking. In Part 3, analytical derivations are presented for quantitatively assessing, a priori, the performance of a track-while-scan radar system (true track initiation, false track initiation, true track continuation and false track deletion characteristics). Simulation results are also shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents, in three parts, a new approach to improve the detection and tracking performance of a track-while-scan radar. Part 1 presents a review of the current status of the subject. Part 2 details the new approach. It shows how a priori information provided by the tracker can be used to improve detection. It also presents a new multitarget tracking algorithm. In the present Part, analytical derivations are presented for assessing, a priori, the performance of the TWS radar system. True track initiation, false track initiation, true track continuation and false track deletion characteristics have been studied. It indicates how the various thresholds can be chosen by the designer to optimise performance. Simulation results are also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

he paper presents, in three parts, a new approach to improve the detection and tracking performance of a track-while-scan (TWS) radar. Part 1 presents a review of current status. In this part, Part 2, it is shown how the detection can be improved by utilising information from tracker. A new multitarget tracking algorithm, capable of tracking manoeuvring targets in clutter, is then presented. The algorithm is specifically tailored so that the solution to the combinatorial problem presented in a companion paper can be applied. The implementation aspects are discussed and a multiprocessor architecture identified to realise the full potential of the algorithm. Part 3 presents analytical derivations for quantitative assessment of the performance of the TWS radar system. It also shows how the performance can be optimised.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a low-complexity algorithm for detection in high-rate, non-orthogonal space-time block coded (STBC) large-multiple-input multiple-output (MIMO) systems that achieve high spectral efficiencies of the order of tens of bps/Hz. We also present a training-based iterative detection/channel estimation scheme for such large STBC MIMO systems. Our simulation results show that excellent bit error rate and nearness-to-capacity performance are achieved by the proposed multistage likelihood ascent search (M-LAS) detector in conjunction with the proposed iterative detection/channel estimation scheme at low complexities. The fact that we could show such good results for large STBCs like 16 X 16 and 32 X 32 STBCs from Cyclic Division Algebras (CDA) operating at spectral efficiencies in excess of 20 bps/Hz (even after accounting for the overheads meant for pilot based training for channel estimation and turbo coding) establishes the effectiveness of the proposed detector and channel estimator. We decode perfect codes of large dimensions using the proposed detector. With the feasibility of such a low-complexity detection/channel estimation scheme, large-MIMO systems with tens of antennas operating at several tens of bps/Hz spectral efficiencies can become practical, enabling interesting high data rate wireless applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a new feature-based approach for mosaicing of camera-captured document images. A novel block-based scheme is employed to ensure that corners can be reliably detected over a wide range of images. 2-D discrete cosine transform is computed for image blocks defined around each of the detected corners and a small subset of the coefficients is used as a feature vector A 2-pass feature matching is performed to establish point correspondences from which the homography relating the input images could be computed. The algorithm is tested on a number of complex document images casually taken from a hand-held camera yielding convincing results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A low temperature polyol process, based on glycolaldehyde mediated partial reduction of FeCl3 center dot 6H(2)O at 120 degrees C in the presence of sodium acetate as an alkali source and 2,2'-(ethylenedioxy)-bis-(ethylamine) as an electrostatic stabilizer has been used for the gram-scale preparation of biocompatible, water-dispersible, amine functionalized magnetite nanoparticles (MNPs) with an average diameter of 6 +/- 0.75 nm. With a reasonably high magnetization (37.8 e.m.u.) and amine groups on the outer surface of the nanoparticles, we demonstrated the magnetic separation and concentration implications of these ultrasmall particles in immunoassay. MRI studies indicated that these nanoparticles had the desired relaxivity for T-2 contrast enhancement in vivo. In vitro biocompatibility, cell uptake and MR imaging studies established that these nanoparticles were safe in clinical dosages and by virtue of their ultrasmall sizes and positively charged surfaces could be easily internalized by cancer cells. All these positive attributes make these functional nanoparticles a promising platform for further in vitro and in vivo evaluations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Usually digital image forgeries are created by copy-pasting a portion of an image onto some other image. While doing so, it is often necessary to resize the pasted portion of the image to suit the sampling grid of the host image. The resampling operation changes certain characteristics of the pasted portion, which when detected serves as a clue of tampering. In this paper, we present deterministic techniques to detect resampling, and localize the portion of the image that has been tampered with. Two of the techniques are in pixel domain and two others in frequency domain. We study the efficacy of our techniques against JPEG compression and subsequent resampling of the entire tampered image.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications. (C) 2005 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With biotin labelled and unlabelled immunoglobulin fraction of anticysticercal antibodies raised in rabbits, tandem-enzyme linked immunosorbent assay (T-ELISA), capture-dot immunobinding assay (C-DIA) and reverse passive haemagglutination (RPHA) tests were developed for the detection of cysticercal antigens. The sensitivity levels were respectively, 9 ng ml−1, 2 ng ml−1 and 45 ng ml−1. All three methods were of equal specificity as none of the antigens of Mycobacterium tuberculosis, Japanese encephalitis virus and Echinococcus granulosus reacted with anticysticercal IgG. Cysticercal antigens were detected in the cerebrospinal fluid (CSF) of confirmed neurocysticercosis at sensitivity levels of 91·6% by T-ELISA, 83·33% by C-DIA and 75% by RPHA and specificity levels of >93%. Western analysis of these antigens in CSF showed mainly antigens of 64–68 kDa and 24–28 kDA. By crossed immunoelectrophoresis (CIE) with an intermediate gel technique, five circulating antigens were found to be released from scolex and fluid.