40 resultados para Family-structure
Resumo:
Eight new open-framework inorganic-organic hybrid compounds based on indium have been synthesized employing hydrothermal methods. All of the compounds have InO6, C2O4, and HPO3/HPO4/SO4 units connected to form structures of different dimensionality Thus, the compounds have zero- (I), two- (II, III, IV, V, VII, and VIII), and three-dimensionally (VI) extended networks. The formation of the first zero-dimensional hybrid compound is noteworthy In addition, concomitant polymorphic structures have been observed in the present study. The molecular compound, I, was found to be reactive, and the transformation studies in the presence of a base (pyridine) give rise to the polymorphic structures of II and III, while the addition of an acid (H3PO3) gives rise to a new indium phosphite with a pillared layer structure (T1). Preliminary density functional theory calculations suggest that the stabilities of the polymorphs are different, with one of the forms (II) being preferred over the other, which is consistent with the observed experimental behavior. The oxalate units perform more than one role in the present structures. Thus, the oxalate units connect two In centers to satisfy the coordination requirements as well as to achieve charge balance in compounds II, IV, and VI. The terminal oxalate units observed in compounds I, IV, and V suggest the possibility of intermediate structures. Both in-plane and out-of-plane connectivity of the oxalate units were observed in compound VI. The 31 compounds have been characterized by powder X-ray diffraction, IR spectroscopy, thermogravimetric analysis, and P-31 NMR studies.
Resumo:
Four new 5-aminoisophthalates of cobalt and nickel have been prepared employing hydro/solvothermal methods: [Co2(C8H5NO4)2(C4H4N2)(H2O)2]·3H2O (I), [Ni2(C8H5NO4)2(C4H4N2)(H2O)2]·3H2O (II), [Co2(H2O)(μ3-OH)2(C8H5NO4)] (III), and [Ni2(H2O)(μ3-OH)2(C8H5NO4)] (IV). Compounds I and II are isostructural, having anion-deficient CdCl2 related layers bridged by a pyrazine ligand, giving rise to a bilayer arrangement. Compounds III and IV have one-dimensional M−O(H)−M chains connected by the 5-aminoisophthalate units forming a three-dimensional structure. The coordinated as well as the lattice water molecules of I and II could be removed and inserted by simple heating−cooling cycles under the atmospheric conditions. The removal of the coordinated water molecule is accompanied by changes in the coordination environment around the M2+ (M = Co, Ni) and color of the samples (purple to blue, Co; green to dark yellow, Ni). This change has been examined by a variety of techniques that include in situ single crystal to single crystal transformation studies and in situ IR and UV−vis spectroscopic studies. Magnetic studies indicate antiferromagnetic behavior in I and II, a field-induced magnetism in III, and a canted antiferromagnetic behavior in IV.
Resumo:
Dinuclear ((VVV)-V-IV) oxophenoxovanadates of general formula [V2O3L] have been synthesized in excellent yields by reacting bis(acetylacetonato)oxovanadium(IV) with H3L in a 2:1 ratio in acetone under an N-2 atmosphere. Here L3- is the deprotonated form of 2,6-bis[{{(2-hydroxybenzyl)(N',N'-(dimethylamino)ethyl)}amino}methyl]-4-methylphenol (H3L1), 2,6-bis[{{(5-methyl-2-hydroxybenzyl)(N',N'-(dimethylamino)ethyl)}amino}methyl]-4-methylphenol (H3L2) 2,6-bis[ {{(5-tert-butyl-2-hydroxybenzyl)(N',N'-(dimethylamino)ethyl)}amino}methyl]-4-methylphenoI (H3L3), 2,6-bis[{{(5-chloro-2-hydroxybenzyl)(N',N'-(dimethylamino)ethyl)}amino}methyl]-4-methylphenol (H3L4) , 2,6-bis[{{(5-bromo-2-hydroxybenzyl)(N',N'-(dimethylamino)ethyl)}amino}methyl]-4-methylphenol (H3L5), or 2,6-bis[{{(5-methoxy-2-hydroxybenzyl)(N',N'-(dimethylamino)ethyl)}amino}methyl]-4-methylphenol (H3L6). In [V2O3L1], both the metal atoms have distorted octahedral geometry. The relative disposition of two terminal V=O groups in the complex is essentially cis. The O=V...V=O torsion angle is 24.6(2)degrees. The V-O-oxo-V and V-O-phenoxo-V angles are 117.5(4) and 93.4(3)degrees, respectively. The V...V bond distance is 3.173(5) Angstrom. X-ray crystallography, IR, UV-vis, and H-1 and V-51 NMR measurements show that the mixed-valence complexes contain two indistinguishable vanadium atoms (type 111). The thermal ellipsoids of O2, O4, C10, C14, and C15 also suggests a type III complex in the solid state. EPR spectra of solid complexes at 77 K display a single line indicating the localization of the odd electron (3d(xy)(1)). Valence localization at 77 K is also consistent with the V-51 hyperfine structure of the axial EPR spectra (3d(xy)(1) ground state) of the complexes in frozen (77 K) dichloromethane solution: S = 1/2, g(parallel to) similar to 1.94, g(perpendicular to) similar to 1.98, A(parallel to) similar to 166 x 10(-4) cm(-1), and A(perpendicular to) similar to 68 x 10(-4) cm(-1). In contrast isotropic room-temperature solution spectra of the family have 15 hyperfine lines (g(iso) similar to 1.974 and A(iso) similar to 50 x 10(-4) cm(-1)) revealing that the unpaired electron is delocalized between the metal centers. Crystal data for the [V2O3L1].CH2Cl2 complex are as follows: chemical formula, C32H43O6N4C12V2; crystal system, monoclinic; space group, C2/c; a = 18.461(4), b = 17.230(3), c = 13.700(3) Angstrom; beta = 117.88(3)degrees; Z = 8.
Resumo:
A hydrothermal reaction of the acetate salts of the rare-earths, 5-aminoisophthalic acid (H(2)AIP), and NaOH at 150 degrees C for 3 days gave rise to a new family of three-dimensional rare-earth aminoisophthalates, M(mu(2)-OH)(C8H5NO4)] M = Y3+ (I), La3+ (II), Pr3+ (III), Nd3+ (IV), Sm3+ (V), Eu3+ (VI), Gd3+ (VII), Dy3+ (VIII), and Er3+ (IX)]. The structures contain M-O(H)-M chains connected by AIP anions. The AIP ions are connected to five metal centers and each metal center is connected with five AIP anions giving rise to a unique (5,5) net. To the best of our knowledge, this is the first observation of a (5,5) net in metal-organic frameworks that involve rare-earth elements. The doping of Eu3+/(3+) ions in place of Y3+/ La3+ in the parent structures gave rise to characteristic metal-centered emission (red = Eu3+, green = Tb3+). Life-time studies indicated that the excited emission states in the case of Eu3+ (4 mol-% doped) are in the range 0.287-0.490 ms and for Tb3+ (4 mol-% doped) are in the range of 1.265-1.702 ms. The Nd3+-containing compound exhibits up-conversion behavior based on two-photon absorption when excited using lambda = 580 nm.
Resumo:
Cuprates of the formula TlSr3−xLnxCu2O7 (Ln=Pr, NdorY) derived from the hypothetical TlSr3Cu2O7 show superconductivity with Tcs up to 95 K when 0.5less, approximatex≤0.75, the x=1.0 compositions being insulators. Rietveld analysis of X-ray diffraction profiles has been carried out for two superconducting members of this family. The unit cell a-parameter, and hence the in-plane Cu-O distance, increases with increase in x. The Tc value decreases with increase in x or the in-plane Cu-O distance in all the series of cuprates. Superconductivity in the Tl1−yPbySr3−xNdxCu2O7 systems is found with the highest Tc of 95 K when y=0.2 and x=0.5. The in-plane Cu-O distances in all the cuprates studied fall in the range found in the Sr-class of cuprate superconductors.
Resumo:
Compounds of the Y3-x Ba3+x Cu6O14+δ system, which YBa2Cu3O7-δ (x = 1) is member, have been prepared. A relatively low temperature nitrate decomposition method gives almost single phase compounds with tetragonal structure. The phases are metastable and show superconducting transitions (zero-resistance) around 50K.
Resumo:
It is shown that Tl2Ca2Ba2Cu3O10+δ (2223), the n=3 member of the Tl2O2. Can�1Ba2CunO2n+2 family shows a Tc (zero-resistance) of 125K (onset 140K) only when it is prepared by the sealed tube ceramic method starting from the 1313 composition. The structure is orthorhombic (Image compared to 30� of 2122), but electron diffraction patterns show two possible orthorhombic structures. Lattice images show the expected local structure and also the presence of dislocations and intergrowths. Both 2223 and 2122 oxides absorb microwaves (9.1GHz) intensely in the superconducting state, with some hysteresis. XPS measurements show Cu mainly in the 1+ state, suggesting the important role of oxygen holes.
Resumo:
Enzymes belonging to the M1 family play important cellular roles and the key amino acids (aa) in the catalytic domain are conserved. However, C-terminal domain aa are highly variable and demonstrate distinct differences in organization. To address a functional role for the C-terminal domain, progressive deletions were generated in Tricorn interacting factor F2 from Thermoplasma acidophilum (F2) and Peptidase N from Escherichia coli (PepN). Catalytic activity was partially reduced in PepN lacking 4 C-terminal residues (PepNΔC4) whereas it was greatly reduced in F2 lacking 10 C-terminal residues (F2ΔC10) or PepN lacking eleven C-terminal residues (PepNΔC11). Notably, expression of PepNΔC4, but not PepNΔC11, in E. coliΔpepN increased its ability to resist nutritional and high temperature stress, demonstrating physiological significance. Purified C-terminal deleted proteins demonstrated greater sensitivity to trypsin and bound stronger to 8-amino 1-napthalene sulphonic acid (ANS), revealing greater numbers of surface exposed hydrophobic aa. Also, F2 or PepN containing large aa deletions in the C-termini, but not smaller deletions, were present in high amounts in the insoluble fraction of cell extracts probably due to reduced protein solubility. Modeling studies, using the crystal structure of E. coli PepN, demonstrated increase in hydrophobic surface area and change in accessibility of several aa from buried to exposed upon deletion of C-terminal aa. Together, these studies revealed that non-conserved distal C-terminal aa repress the surface exposure of apolar aa, enhance protein solubility, and catalytic activity in two soluble and distinct members of the M1 family.
Resumo:
Mixed-species bird flocks are attractive models for the investigation of geographical variation in animal communities, as they represent a subset of the avifauna in most forested regions of the world. Yet studies of the regional variation in flock size and the composition of flocks are few, due to the predominance of studies carried out at single study site. Here, we review nine studies of mixed-species flocks conducted at 16 sites along the Western Ghats in India and in Sri Lanka. We find that flock size varies as much within this region as it does globally, with observation time being a confounding variable. Flock composition, however, is predictably related to elevation. Flocks at high elevations (>1200 m) in the Western Ghats strongly resemble flocks at high elevations in the mountain ranges of Sri Lanka in their composition, especially at the family level. We compare these flocks to flocks of other regions and make recommendations on study methodology that can facilitate comparisons across studies.
Resumo:
A permanent 2 ha (200 m x 100 m) plot was established for long-term monitoring of plant diversity and dynamics in a tropical dry deciduous forest of Bhadra Wildlife Sanctuary, Karnataka, southern India. Enumeration of all woody plants >= 1 cm DBH (diameter at breast height) yielded a total of 1766 individuals that belonged to 46 species, 37 genera and 24 families. Combretaceae was the most abundant family in the forest with a family importance value of 68.3. Plant density varied from 20 - 90 individuals with an average 35 individuals/quadrat (20 m x 20 m). Randia dumetorum, with 466 individuals (representing 26.7 % of the total density 2 ha(-1)) with species importance value of 36.25, was the dominant species in the plot. The total basal area of the plot was 18.09 m(2) ha(-1) with a mean of 0.72 m(2) quadrat(-1). The highest basal area of the plot was contributed by Combretaceae (12.93 m(2) 2 ha(-1)) at family level and Terminalia tomentosa (5.58 m(2) 2 ha(-1)) at species level. The lowest diameter class (1-10 cm) had the highest density (1054 individuals 2 ha(-1)), but basal area was highest in the 80 - 90 cm diameter class (5.03m(2) 2 ha(-1)). Most of the species exhibited random or aggregated distribution over the plot. This study provides a baseline information on the dry forests of Bhadra Wildlife Sanctuary.
Resumo:
Serine hydroxymethyltransferase (SHMT) belongs to the alpha-family of pyridoxal 5'-phosphate-dependent enzymes and catalyzes the reversible conversion of L-Ser and etrahydrofolate to Gly and 5,10-methylene tetrahydrofolate. 5,10-Methylene tetrahydrofolate serves as a source of one-carbon fragment in many biological processes. SHMT also catalyzes the tetrahydrofolate-independent conversion of L-allo-Thr to Gly and acetaldehyde. The crystal structure of Bacillus stearothermophilus SHMT (bsSHMT) suggested that E53 interacts with the substrate, L-Ser and etrahydrofolate. To elucidate the role of E53, it was mutated to Q and structural and biochemical studies were carried out with the mutant enzyme. The internal aldimine structure of E53QbsSHMT was similar to that of the except for significant changes at Q53, Y60 and Y61. The wild-type enzyme, carboxyl of Gly and side chain of L-Ser were in two conformations in the respective external aldimine structures. The mutant enzyme was completely inactive for tetrahydrofolate-depen dent cleavage of L-Ser, whereas there was a 1.5-fold increase in the rate of tetrahydrofolate-independent reaction with L-allo-Thr. The results obtained from these studies suggest that E53 plays an essential role in tetrahydrofolate/5-formyl tetrahydrofolate binding and in the proper positioning of C beta of L-Ser for direct attack by N5 of tetrahydrofolate. Most interestingly, the structure of the complex obtained by cocrystallization of E53QbsSHMT with Gly and 5-formyl tetrahydrofolate revealed the gem-diamine form of pyridoxal 5'-phosphate bound to Gly and active site Lys. However, density for 5-formyl tetrahydrofolate was not observed. Gly carboxylate was in a single conformation, whereas pyridoxal 5'-phosphate had two distinct conformations. The differences between the structures of this complex and Gly external aldimine suggest that the changes induced by initial binding of 5-formyl tetrahydrofolate are retained even though 5-formyl tetrahydrofolate is absent in the final structure. Spectral studies carried out with this mutant enzyme also suggest that 5-formyl tetrahydrofolate binds to the E53QbsSHMT-Gly complex forming a quinonoid intermediate and falls off within 4 h of dialysis, leaving behind the mutant enzyme in the gemdiamine form. This is the first report to provide direct evidence for enzyme memory based on the crystal structure of enzyme complexes.
Resumo:
The TCP transcription factors control multiple developmental traits in diverse plant species. Members of this family share an similar to 60-residue-long TCP domain that binds to DNA. The TCP domain is predicted to form a basic helix-loop-helix ( bHLH) structure but shares little sequence similarity with canonical bHLH domain. This classifies the TCP domain as a novel class of DNA binding domain specific to the plant kingdom. Little is known about how the TCP domain interacts with its target DNA. We report biochemical characterization and DNA binding properties of a TCP member in Arabidopsis thaliana, TCP4. We have shown that the 58-residue domain of TCP4 is essential and sufficient for binding to DNA and possesses DNA binding parameters comparable to canonical bHLH proteins. Using a yeast-based random mutagenesis screen and site-directed mutants, we identified the residues important for DNA binding and dimer formation. Mutants defective in binding and dimerization failed to rescue the phenotype of an Arabidopsis line lacking the endogenous TCP4 activity. By combining structure prediction, functional characterization of the mutants, and molecular modeling, we suggest a possible DNA binding mechanism for this class of transcription factors.
Resumo:
Background: Stabilization strategies adopted by proteins under extreme conditions are very complex and involve various kinds of interactions. Recent studies have shown that a large proportion of proteins have their N- and C-terminal elements in close contact and suggested they play a role in protein folding and stability. However, the biological significance of this contact remains elusive. Methodology: In the present study, we investigate the role of N- and C-terminal residue interaction using a family 10 xylanase (BSX) with a TIM-barrel structure that shows stability under high temperature,alkali pH, and protease and SDS treatment. Based on crystal structure,an aromatic cluster was identified that involves Phe4, Trp6 and Tyr343 holding the Nand C-terminus together; this is a unique and important feature of this protein that might be crucial for folding and stabilityunder poly-extreme conditions. Conclusion: A series of mutants was created to disrupt this aromatic cluster formation and study the loss of stability and function under given conditions. While the deletions of Phe4 resulted in loss of stability, removal of Trp6 and Tyr343 affected in vivo folding and activity. Alanine substitution with Phe4, Trp6 and Tyr343 drastically decreased stability under all parameters studied. Importantly,substitution of Phe4 with Trp increased stability in SDS treatment.Mass spectrometry results of limited proteolysis further demonstrated that the Arg344 residue is highly susceptible to trypsin digestion in sensitive mutants such as DF4, W6A and Y343A, suggesting again that disruption of the Phe4-Trp6-Tyr343 (F-W-Y) cluster destabilizes the N-and C-terminal interaction. Our results underscore the importance of N- and C-terminal contact through aromatic interactions in protein folding and stability under extreme conditions, and these results may be useful to improve the stability of other proteins under suboptimal conditions.
Resumo:
Encoding protein 3D structures into 1D string using short structural prototypes or structural alphabets opens a new front for structure comparison and analysis. Using the well-documented 16 motifs of Protein Blocks (PBs) as structural alphabet, we have developed a methodology to compare protein structures that are encoded as sequences of PBs by aligning them using dynamic programming which uses a substitution matrix for PBs. This methodology is implemented in the applications available in Protein Block Expert (PBE) server. PBE addresses common issues in the field of protein structure analysis such as comparison of proteins structures and identification of protein structures in structural databanks that resemble a given structure. PBE-T provides facility to transform any PDB file into sequences of PBs. PBE-ALIGNc performs comparison of two protein structures based on the alignment of their corresponding PB sequences. PBE-ALIGNm is a facility for mining SCOP database for similar structures based on the alignment of PBs. Besides, PBE provides an interface to a database (PBE-SAdb) of preprocessed PB sequences from SCOP culled at 95% and of all-against-all pairwise PB alignments at family and superfamily levels. PBE server is freely available at http://bioinformatics.univ-reunion.fr/ PBE/.