32 resultados para FU(p)-Space
Resumo:
Asymmetric tri-bridged diruthenium(III) complexes, [Ru2O(O(2)CR)(3)(en) (PPh(3))(2)](ClO4) (R = C6H4-p-X: X = OMe (1a), Me (1b); en=1,2-diaminoethane), were prepared and structurally characterized. Complex 1a 3CHCl(3), crystallizes in the triclinic space group P (1) over bar with a = 14.029(5), b = 14.205(5), c = 20.610(6) Angstrom, alpha= 107.26(3), beta = 101.84(3), gamma= 97.57(3)degrees, V= 3756(2) Angstrom(3) and Z = 2. The complex has an {Ru-2(mu-O)(mu-O(2)CR)(2)(2+)} core and exhibits [O4PRu(mu-O)RuPO2N2](+) coordination environments for the metal centers. The novel structural feature is the asymmetric arrangement of ligands at the terminal sites of the core which shows an Ru... Ru separation of 3.226(3) Angstrom and an Ru-O-Ru angle of 119.2(5)degrees. An intense visible band observed near 570 nm is assigned to a charge transfer transition involving the d pi-Ru(III) and p pi-mu-O Orbitals. Cyclic voltammetry of the complexes displays a reversible Ru-2(III,III) reversible arrow Ru-2(III,IV) couple near 0.8 V (versus SCE) in MeCN-0.1 M TBAP.
Resumo:
Diruthenium (II. III) complexes of the type [Ru-2(O2CAr)(4) (2-mimH)(2)](ClO4) (Ar = C6H4-p-X : X=OMe,1, X=Me, 2, 2-mimH=2-methylimidazole) have been isolated from the reaction of Ru2Cl(O2CAr)(4) with 2-mimH in CH2Cl2 followed by the addition of NaClO4. The crystal structure of 1.1.75CH(2)Cl(2).H2O has been determined. The crystal belongs to the monoclinic space group p2(1)/c with the following unit cell dimensions for the C40H40N4O16ClRu2.1.75CH(2)Cl(2).H2O (M = 1237.0) : a = 12.347(3)Angstrom, b = 17.615(5)Angstrom, c = 26.148(2)Angstrom,beta = 92.88(1)degrees. v = 5679(2)Angstrom(3). Z=4, D-c = 1.45 g cm(-3). lambda(Mo-K-alpha) = 0.7107 Angstrom, mu(Mo-K-alpha) = 8.1 cm(-1), T = 293 K, R = 0.0815 (wR(2) = 0.2118) for 5834 reflections with 1 > 2 sigma(I). The complex has a tetracarboxylatodiruthenium (II, III) core and two axially bound 2-methylimidazole ligands. The Ru-Ru bond length is 2.290(1)Angstrom. The Ru-Ru bond order is 2.5 and the complex is three-electron paramagnetic. The complex shows an irreversible Ru-2(II,III)-->Ru-2(Il,II) reduction near -0.2 V vs SCE in CH2Cl2-0. 1 MTBAP. The complexes exemplify the first adduct of the tetracarboxylatodiruthenium (II,III) core having N-donor ligands
Resumo:
Distributed space time coding for wireless relay networks when the source, the destination and the relays have multiple antennas have been studied by Jing and Hassibi. In this set-up, the transmit and the receive signals at different antennas of the same relay are processed and designed independently, even though the antennas are colocated. In this paper, a wireless relay network with single antenna at the source and the destination and two antennas at each of the R relays is considered. A new class of distributed space time block codes called Co-ordinate Interleaved Distributed Space-Time Codes (CIDSTC) are introduced where, in the first phase, the source transmits a T-length complex vector to all the relays;and in the second phase, at each relay, the in-phase and quadrature component vectors of the received complex vectors at the two antennas are interleaved and processed before forwarding them to the destination. Compared to the scheme proposed by Jing-Hassibi, for T >= 4R, while providing the same asymptotic diversity order of 2R, CIDSTC scheme is shown to provide asymptotic coding gain with the cost of negligible increase in the processing complexity at the relays. However, for moderate and large values of P, CIDSTC scheme is shown to provide more diversity than that of the scheme proposed by Jing-Hassibi. CIDSTCs are shown to be fully diverse provided the information symbols take value from an appropriate multidimensional signal set.
Resumo:
For the quasi-static, Rayleigh-fading multiple-input multiple-output (MIMO) channel with n(t) transmit and n(r) receive antennas, Zheng and Tse showed that there exists a fundamental tradeoff between diversity and spatial-multiplexing gains, referred to as the diversity-multiplexing gain (D-MG) tradeoff. Subsequently, El Gamal, Caire, and Damen considered signaling across the same channel using an L-round automatic retransmission request (ARQ) protocol that assumes the presence of a noiseless feedback channel capable of conveying one bit of information per use of the feedback channel. They showed that given a fixed number L of ARQ rounds and no power control, there is a tradeoff between diversity and multiplexing gains, termed the diversity-multiplexing-delay (DMD) tradeoff. This tradeoff indicates that the diversity gain under the ARQ scheme for a particular information rate is considerably larger than that obtainable in the absence of feedback. In this paper, a set of sufficient conditions under which a space-time (ST) code will achieve the DMD tradeoff is presented. This is followed by two classes of explicit constructions of ST codes which meet these conditions. Constructions belonging to the first class achieve minimum delay and apply to a broad class of fading channels whenever n(r) >= n(t) and either L/n(t) or n(t)kslashL. The second class of constructions do not achieve minimum delay, but do achieve the DMD tradeoff of the fading channel for all statistical descriptions of the channel and for all values of the parameters n(r,) n(t,) L.
Resumo:
The reaction of hexachlorocyclotriphosphazene (N3P3Cl6) with sodium p-cresoxide proceeds by a predominantly nongeminal pathway. The presence of geminal isomers at the bis- and tris-stages of substitution in tiny quantities (< 5%) has also been observed. All the chloro(p-cresoxy)cyclotriphosphazenes and their dimethylamino derivatives have been characterized by 1H-, 13C{1H}-, and 31P{1H}-NMR spectroscopy. The reaction of N3P3Cl6 with sodium phenoxide has been reinvestigated. The relative yields of the products at various stages of substitution and their isomeric compositions are almost the same for both phenoxy and p-cresoxy systems. Possible mechanisms to explain the observed isomeric compositions are discussed. A through-space interaction involving oxygen-2p and phosphorus-3d orbitals is invoked to explain the greater yield of the cis isomer of N3P3Cl4(OAr)2 than that of its trans isomer.
Resumo:
A mechanics based linear analysis of the problem of dynamic instabilities in slender space launch vehicles is undertaken. The flexible body dynamics of the moving vehicle is studied in an inertial frame of reference, including velocity induced curvature effects, which have not been considered so far in the published literature. Coupling among the rigid-body modes, the longitudinal vibrational modes and the transverse vibrational modes due to asymmetric lifting-body cross-section are considered. The model also incorporates the effects of aerodynamic forces and the propulsive thrust of the vehicle. The effects of the coupling between the combustion process (mass variation, developed thrust etc.) and the variables involved in the flexible body dynamics (displacements and velocities) are clearly brought out. The model is one-dimensional, and it can be employed to idealised slender vehicles with complex shapes. Computer simulations are carried out using a standard eigenvalue problem within h-p finite element modelling framework. Stability regimes for a vehicle subjected to propulsive thrust are validated by comparing the results from published literature. Numerical simulations are carried out for a representative vehicle to determine the instability regimes with vehicle speed and propulsive thrust as the parameters. The phenomena of static instability (divergence) and dynamic instability (flutter) are observed. The results at low Mach number match closely with the results obtained from previous models published in the literature.
Resumo:
We explore the semi-classical structure of the Wigner functions ($\Psi $(q, p)) representing bound energy eigenstates $|\psi \rangle $ for systems with f degrees of freedom. If the classical motion is integrable, the classical limit of $\Psi $ is a delta function on the f-dimensional torus to which classical trajectories corresponding to ($|\psi \rangle $) are confined in the 2f-dimensional phase space. In the semi-classical limit of ($\Psi $ ($\hslash $) small but not zero) the delta function softens to a peak of order ($\hslash ^{-\frac{2}{3}f}$) and the torus develops fringes of a characteristic 'Airy' form. Away from the torus, $\Psi $ can have semi-classical singularities that are not delta functions; these are discussed (in full detail when f = 1) using Thom's theory of catastrophes. Brief consideration is given to problems raised when ($\Psi $) is calculated in a representation based on operators derived from angle coordinates and their conjugate momenta. When the classical motion is non-integrable, the phase space is not filled with tori and existing semi-classical methods fail. We conjecture that (a) For a given value of non-integrability parameter ($\epsilon $), the system passes through three semi-classical regimes as ($\hslash $) diminishes. (b) For states ($|\psi \rangle $) associated with regions in phase space filled with irregular trajectories, ($\Psi $) will be a random function confined near that region of the 'energy shell' explored by these trajectories (this region has more than f dimensions). (c) For ($\epsilon \neq $0, $\hslash $) blurs the infinitely fine classical path structure, in contrast to the integrable case ($\epsilon $ = 0, where $\hslash $ )imposes oscillatory quantum detail on a smooth classical path structure.
Resumo:
The crystal structure of 5'-amino-5'-deoxyadenosine (5'-Am.dA) p-toluenesulfonate has been determined by X-ray crystallographic methods. It belongs to the orthorhombic space group P2(1)2(1)2(1) with a = 7.754(3)Angstrom, b = 8.065(1)Angstrom and c = 32.481(2)Angstrom. This nucleoside side shows a syn conformation about the glycosyl bond and C2'-endo-C3'-exo puckering for the ribose sugar. The orientation of N5' atom is gauche-trans about the exocyclic C4'-C5' bond. The amino nitrogen N5' forms a trifurcated hydrogen bond with N3, O9T and O4' atoms. Adenine bases form A.A.A triplets through hydrogen bonding between N6, N7 and N1 atoms of symmetry related nucleoside molecules.
Resumo:
Doping dependent current-voltage (I-V) and capacitance-voltage (C-V) measurements were carried out on polypyrrole devices in metal-polymer-metal sandwich structure. Temperature dependent I-V measurements infer that space-charge limited conduction (SCLC) with exponential trap distribution is appropriate for the moderately doped samples, whereas trap-free SCLC is observed in lightly doped samples. Trap densities and energies are estimated, the effective mobility is calculated using the Poole-Frenkel model, and the mobility exhibits thermally activated behavior. Frequency dependent capacitance-voltage characteristics show a peak near zero bias voltage, which implies that these devices are symmetric with a negligible barrier height at the metal-polymer interface. Low frequency capacitance measurements have revealed a negative capacitance at higher voltages due to the processes associated with the injection and redistribution of space-charges. (C) 2010 American Institute of Physics.
Resumo:
In this two-part series of papers, a generalized non-orthogonal amplify and forward (GNAF) protocol which generalizes several known cooperative diversity protocols is proposed. Transmission in the GNAF protocol comprises of two phases - the broadcast phase and the cooperation phase. In the broadcast phase, the source broadcasts its information to the relays as well as the destination. In the cooperation phase, the source and the relays together transmit a space-time code in a distributed fashion. The GNAF protocol relaxes the constraints imposed by the protocol of Jing and Hassibi on the code structure. In Part-I of this paper, a code design criteria is obtained and it is shown that the GNAF protocol is delay efficient and coding gain efficient as well. Moreover GNAF protocol enables the use of sphere decoders at the destination with a non-exponential Maximum likelihood (ML) decoding complexity. In Part-II, several low decoding complexity code constructions are studied and a lower bound on the Diversity-Multiplexing Gain tradeoff of the GNAF protocol is obtained.
Ultrasonic measurement of the elastic constants of sodium p-nitrophenolate dihydrate single crystals
Resumo:
Sodium p-nitrophenolate dihydrate single crystals possess excellent nonlinear optical properties such that they can be used for optical second-harmonic generation. It belongs to the orthorhombic system with the space group Ima2. Slow evaporation or slow cooling techniques can be used to grow good optical quality single crystals from supersaturated solution. All the nine elastic constants of this crystal have been measured using an ultrasonic technique. Samples for measurements have been cut along desired crystallographic axes and the pulse echo overlap technique has been used to measure longitudinal and shear ultrasonic wave velocities along appropriate symmetry directions in the crystal. The McSkimin Delta t criterion has been applied to determine the round trip travel time accurately, from which the nine elastic constants have been evaluated. Temperature variation of selected elastic constants in a limited range have also been measured and reported.
Resumo:
Eulytite compounds, A(3)Bi(XO4)(3) (X = P, A = Ca, Cd, Sr, Pb), belong to the noncentrosymmetric space group l (4) over bar 3d (No. 220) as determined by single-crystal X-ray diffraction studies. The crystals were grown from the melt-cool technique with considerable difficulty as the compounds melt incongruently at their melting temperature, except for the compound Pb3Bi(PO4)(3). The unit cell parameter a is 9.984(5), 9.8611(3), 10.2035(3), and 10.3722(2) angstrom for Ca3Bi(PO4)(3), Cd3Bi(PO4)(3), Sr3Bi(PO4)(3), and Pb3Bi(PO4)(3) respectively, and there are four formula units in the unit cell. The structure of Pb3Bi(VO4)(3), a unique eulytite with vanadium substitution, is compared with all these phosphorus substituted eulytites. The A(2+) and Bi3+ cations occupy the special position (16c) while the O anions occupy the general Wyckoff position (48e) in the crystal structure. Only one O position has been identified for Pb3Bi(PO4)(3) and Pb3Bi(VO4)(3), whereas two O atom sites were identified for Ca3Bi(PO4)(3), Cd3Bi(PO4)(3), and Sr3Bi(PO4)(3). The UV-vis diffuse reflectance spectra indicate large band gaps for all the phosphate eulytites while a lower band gap is observed for the vanadate eulytite. The feasibility of the use of these compounds in optoelectronic devices has been tested by measuring the second-harmonic generation (SHG) values which have been found to be of a magnitude equivalent to the commercially used KDP (KH2PO4).
Resumo:
The reactions of the complexes [MI2(CO)3-(NCMe)2] (M = Mo, W) with the diphosphazane ligands RN{P(OPh)2}2 (R = Me, Ph) in CH2Cl2 at room temperature afford new seven-coordinated complexes of the type [MI2(CO)3{P(OPh)2}2NR]. The molybdenum complexes are sensitive to air oxidation even in the solid state, whereas the tungsten complexes are more stable in the solid state and in solution. The structure of the tungsten complex [WI2(CO)3{P(OPh)2}2NPh] has been determined by single-crystal X-ray diffraction. It crystallizes in the orthorhombic system with the space group Pna 2(1), a = 19.372 (2) angstrom, b = 11.511 (1) angstrom, c = 15.581 (1) angstrom, and Z = 4. Full-matrix least-squares refinement with 3548 reflections (I > 2.5-sigma-(I)) led to final R and R(w) values of 0.036 and 0.034, respectively. The complex adopts a slightly distorted pentagonal-bypyramidal geometry rarely observed for such a type of complexes; two phosphorus atoms of the diphosphazane ligand, two iodine atoms, and a carbonyl group occupy the equatorial plane, and the other two carbonyl groups, the apical positions.
Resumo:
An air-stable and water-soluble diastereomeric half-sandwich ruthenium(I1) complex, [Ru(s-MeCsH4Pr'-p)(H*O)-(L*)] (C104) (l), has been isolated and structurally characterized [HL* = (27)-(a methylbenzyl)salicylaldimine,2-HOC6H4CH-NCHMePhI. Complex 1, Czd-I3oNO&lRu, crystallizes in the noncentric triclinic space group P1 with a = 9.885(1) A, b = 10.185(1) A, c = 14.187(2) A, a = 110.32(1)', 6 = 102.17(1)', y = 102.41(1)O, V=1243( 1) A3, and 2 = 2. The X-ray structure shows the presence of two diastereomers in a 1:l ratio having RR,,,SCand SR,,,&c onfigurations. The Ru-OHz bond distances are considerably long, and the values for RR, - a~n d SRu-1isomers are 2.1 19(5) and 2.203(5) A, respectively. The aqua complex (1) exists as a single diastereomer in solution,and it forms stable adducts with P-, N-, and halide-donor ligands. The stereochemical changes associated with adduct-forming reactions follow an inversion order: PPhs >> P(OMe)3 > pyridine bases >> halides (I, Br, Cl) >H20.