337 resultados para Experimental data
Resumo:
Volumetric method based adsorption measurements of nitrogen on two specimens of activated carbon (Fluka and Sarabhai) reported by us are refitted to two popular isotherms, namely, Dubunin−Astakhov (D−A) and Toth, in light of improved fitting methods derived recently. Those isotherms have been used to derive other data of relevance in design of engineering equipment such as the concentration dependence of heat of adsorption and Henry’s law coefficients. The present fits provide a better representation of experimental measurements than before because the temperature dependence of adsorbed phase volume and structural heterogeneity of micropore distribution have been accounted for in the D−A equation. A new correlation to the Toth equation is a further contribution. The heat of adsorption in the limiting uptake condition is correlated with the Henry’s law coefficients at the near zero uptake condition.
Resumo:
Efavirenz, (S)-6-chloro-4-(cyclopropylethynyl)-1,4-dihydro-4-(trifluoromethyl)-2H-3 ,1-benzoxazin-2-one, is an anti HIV agent belonging to the class of the non-nucleoside inhibitors of the HIV-1 virus reverse transcriptase. A systematic quantum chemical study of the possible conformations, their relative stabilities and vibrational spectra of efavirenz has been reported. Structural and spectral characteristics of efavirenz have been studied by vibrational spectroscopy and quantum chemical methods. Density functional theory (DFT) calculations for potential energy curve, optimized geometries and vibrational spectra have been carried out using 6-311++G(d,p) basis sets and B3LYP functionals. Based on these results, we have discussed the correlation between the vibrational modes and the crystalline structure of the most stable form of efavirenz. A complete analysis of the experimental infrared and Raman spectra has been reported on the basis of wavenumber of the vibrational bands and potential energy distribution. The infrared and the Raman spectra of the molecule based on OFT calculations show reasonable agreement with the experimental results. The calculated HOMO and LUMO energies shows that charge transfer occur within the molecule. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The Fourier transform Raman and infrared (IR) spectra of the Ceramide 3 (CER3) have been recorded in the regions 200-3500 cm(-1) and 680-4000 cm(-1), respectively. We have calculated the equilibrium geometry, harmonic vibrational wavenumbers, electrostatic potential surfaces, absolute Raman scattering activities and IR absorption intensities by the density functional theory with B3LYP functionals having extended basis set 6-311G. This work is undertaken to study the vibrational spectra of CER3 completely and to identify the various normal modes with better wavenumber accuracy. Good consistency is found between the calculated results and experimental data for the IR and Raman spectra.
Resumo:
We develop iterative diffraction tomography algorithms, which are similar to the distorted Born algorithms, for inverting scattered intensity data. Within the Born approximation, the unknown scattered field is expressed as a multiplicative perturbation to the incident field. With this, the forward equation becomes stable, which helps us compute nearly oscillation-free solutions that have immediate bearing on the accuracy of the Jacobian computed for use in a deterministic Gauss-Newton (GN) reconstruction. However, since the data are inherently noisy and the sensitivity of measurement to refractive index away from the detectors is poor, we report a derivative-free evolutionary stochastic scheme, providing strictly additive updates in order to bridge the measurement-prediction misfit, to arrive at the refractive index distribution from intensity transport data. The superiority of the stochastic algorithm over the GN scheme for similar settings is demonstrated by the reconstruction of the refractive index profile from simulated and experimentally acquired intensity data. (C) 2014 Optical Society of America
Resumo:
The cybernetic modeling framework for the growth of microorganisms provides for an elegant methodology to account for the unknown regulatory phenomena through the use of cybernetic variables for enzyme induction and activity. In this paper, we revisit the assumption of limited resources for enzyme induction (Sigma u(i) = 1) used in the cybernetic modeling framework by presenting a methodology for inferring the individual cybernetic variables u(i) from experimental data. We use this methodology to infer u(i) during the simultaneous consumption of glycerol and lactose by Escherichia coli and then model the fitness trade-offs involved in the recently discovered predictive regulation strategy of microorganisms.
Resumo:
This paper presents the site classification of Bangalore Mahanagar Palike (BMP) area using geophysical data and the evaluation of spectral acceleration at ground level using probabilistic approach. Site classification has been carried out using experimental data from the shallow geophysical method of Multichannel Analysis of Surface wave (MASW). One-dimensional (1-D) MASW survey has been carried out at 58 locations and respective velocity profiles are obtained. The average shear wave velocity for 30 m depth (Vs(30)) has been calculated and is used for the site classification of the BMP area as per NEHRP (National Earthquake Hazards Reduction Program). Based on the Vs(30) values major part of the BMP area can be classified as ``site class D'', and ``site class C'. A smaller portion of the study area, in and around Lalbagh Park, is classified as ``site class B''. Further, probabilistic seismic hazard analysis has been carried out to map the seismic hazard in terms spectral acceleration (S-a) at rock and the ground level considering the site classes and six seismogenic sources identified. The mean annual rate of exceedance and cumulative probability hazard curve for S. have been generated. The quantified hazard values in terms of spectral acceleration for short period and long period are mapped for rock, site class C and D with 10% probability of exceedance in 50 years on a grid size of 0.5 km. In addition to this, the Uniform Hazard Response Spectrum (UHRS) at surface level has been developed for the 5% damping and 10% probability of exceedance in 50 years for rock, site class C and D These spectral acceleration and uniform hazard spectrums can be used to assess the design force for important structures and also to develop the design spectrum.
Resumo:
The effect of some experimental parameters, namely sample weight, particle size and its distribution, heating rate and flow rate of inert gas, on the fractional decomposition of calcium carbonate samples have been studied both experimentally and theoretical. The general conclusions obtained from theoretical analysis are corroborated qualitatively by the experimental data. The analysis indicates that the kinetic compensating effect may be partly due to the variations in experimental parameters for different experiments.
Resumo:
The applicability of a formalism involving an exponential function of composition x1 in interpreting the thermodynamic properties of alloys has been studied. The excess integral and partial molar free energies of mixing are expressed as: $$\begin{gathered} \Delta F^{xs} = a_o x_1 (1 - x_1 )e^{bx_1 } \hfill \\ RTln\gamma _1 = a_o (1 - x_1 )^2 (1 + bx_1 )e^{bx_1 } \hfill \\ RTln\gamma _2 = a_o x_1^2 (1 - b + bx_1 )e^{bx_1 } \hfill \\ \end{gathered} $$ The equations are used in interpreting experimental data for several relatively weakly interacting binary systems. For the purpose of comparison, activity coefficients obtained by the subregular model and Krupkowski’s formalism have also been computed. The present equations may be considered to be convenient in describing the thermodynamic behavior of metallic solutions.
Resumo:
We present some results on multicarrier analysis of magnetotransport data, Both synthetic as well as data from narrow gap Hg0.8Cd0.2Te samples are used to demonstrate applicability of various algorithms vs. nonlinear least square fitting, Quantitative Mobility Spectrum Analysis (QMSA) and Maximum Entropy Mobility Spectrum Analysis (MEMSA). Comments are made from our experience oil these algorithms, and, on the inversion procedure from experimental R/sigma-B to S-mu specifically with least square fitting as an example. Amongst the conclusions drawn are: (i) Experimentally measured resistivity (R-xx, R-xy) should also be used instead of just the inverted conductivity (sigma(xx), sigma(xy)) to fit data to semiclassical expressions for better fits especially at higher B. (ii) High magnetic field is necessary to extract low mobility carrier parameters. (iii) Provided the error in data is not large, better estimates to carrier parameters of remaining carrier species can be obtained at any stage by subtracting highest mobility carrier contribution to sigma from the experimental data and fitting with the remaining carriers. (iv)Even in presence of high electric field, an approximate multicarrier expression can be used to guess the carrier mobilities and their variations before solving the full Boltzmann equation.
Resumo:
The three-phase equilibrium between alloy, spinel solid solution and alpha -Al sub 2 O sub 3 in the Fe--Co--Al--O system at 1873k was fully characterized as a function of alloy composition using both experimental and computational methods. The equilibrium oxygen content of the liquid alloy was measured by suction sampling and inert gas fusion analysis. The O potential corresponding to the three-phase equilibrium was determined by emf measurements on a solid state galvanic cell incorporating (Y sub 2 O sub 3 )ThO sub 2 as the solid electrolyte and Cr + Cr sub 2 O sub 3 as the reference electrode. The equilibrium composition of the spinel phase formed at the interface between the alloy and alumina crucible was measured by electron probe microanalysis (EPMA). The experimental results were compared with the values computed using a thermodynamic model. The model used values for standard Gibbs energies of formation of pure end-member spinels and Gibbs energies of solution of gaseous O in liquid Fe and cobalt available in the literature. The activity--composition relationship in the spinel solid solution was computed using a cation distribution model. The variation of the activity coefficient of O with alloy composition in the Fe--Co--O system was estimated using both the quasichemical model of Jacob and Alcock and Wagner's model along with the correlations of Chiang and Chang and Kuo and Chang. The computed results of spinel composition and O potential are in excellent agreement with the experimental data. Graphs. 29 ref.--AA
Resumo:
Experiments are performed to determine the mass and stiffness variations along the wing of the blowfly Calliphora. The results are obtained for a pairs of wings of 10 male flies and fresh wings are used. The wing is divided into nine locations along the span and seven locations along the chord based on venation patterns. The length and mass of the sections is measured and the mass per unit length is calculated. The bending stiffness measurements are taken at three locations, basal (near root), medial and distal (near tip) of the fly wing. Torsional stiffness measurements are also made and the elastic axis of the wing is approximately located. The experimental data is then used for structural modeling of the wing as a stepped cantilever beam with nine spanwise sections of varying mass per unit lengths, flexural rigidity (EI) and torsional rigidity (GJ) values. Inertial values of nine sections are found to approximately vary according to an exponentially decreasing law over the nine sections from root to tip and it is used to calculate an approximate value of Young's modulus of the wing biomaterial. Shear modulus is obtained assuming the wing biomaterial to be isotropic. Natural frequencies, both in bending and torsion, are obtained by solving the homogeneous part of the respective governing differential equations using the finite element method. The results provide a complete analysis of Calliphora wing structure and also provide guidelines for the biomimetic structural design of insect-scale flapping wings.
Resumo:
Two methods based on wavelet/wavelet packet expansion to denoise and compress optical tomography data containing scattered noise are presented, In the first, the wavelet expansion coefficients of noisy data are shrunk using a soft threshold. In the second, the data are expanded into a wavelet packet tree upon which a best basis search is done. The resulting coefficients are truncated on the basis of energy content. It can be seen that the first method results in efficient denoising of experimental data when scattering particle density in the medium surrounding the object was up to 12.0 x 10(6) per cm(3). This method achieves a compression ratio of approximate to 8:1. The wavelet packet based method resulted in a compression of up to 11:1 and also exhibited reasonable noise reduction capability. Tomographic reconstructions obtained from denoised data are presented. (C) 1999 Published by Elsevier Science B.V. All rights reserved,
Resumo:
A systematic assessment of the submodels of conditional moment closure (CMC) formalism for the autoignition problem is carried out using direct numerical simulation (DNS) data. An initially non-premixed, n-heptane/air system, subjected to a three-dimensional, homogeneous, isotropic, and decaying turbulence, is considered. Two kinetic schemes, (1) a one-step and (2) a reduced four-step reaction mechanism, are considered for chemistry An alternative formulation is developed for closure of the mean chemical source term
Resumo:
We consider the simplest IEEE 802.11 WLAN networks for which analytical models are available and seek to provide an experimental validation of these models. Our experiments include the following cases: (i) two nodes with saturated queues, sending fixed-length UDP packets to each other, and (ii) a TCP-controlled transfer between two nodes. Our experiments are based entirely on Aruba AP-70 access points operating under Linux. We report our observations on certain non-standard behavior of the devices. In cases where the devices adhere to the standards, we find that the results from the analytical models estimate the experimental data with a mean error of 3-5%.
Resumo:
We propose a new method for evaluating the adsorbed phase volume during physisorption of several gases on activated carbon specimens. We treat the adsorbed phase as another equilibrium phase which satisfies the Gibbs equation and hence assume that the law of rectilinear diameters is applicable. Since invariably the bulk gas phase densities are known along measured isotherms, the constants of the adsorbed phase volume can be regressed from the experimental data. We take the Dubinin-Astakhov isotherm as the model for verifying our hypothesis since it is one of the few equations that accounts for adsorbed phase volume changes. In addition, the pseudo-saturation pressure in the supercritical region is calculated by letting the index of the temperature term in Dubinin's equation to be temperature dependent. Based on over 50 combinations of activated carbons and adsorbates (nitrogen, oxygen, argon, carbon dioxide, hydrocarbons and halocarbon refrigerants) it is observed that the proposed changes fit experimental data quite well.