146 resultados para Expanded Bed Adsorption
Resumo:
This paper presents the instrumentation and control architecture for a laboratory based two-stage 4-bed silica gel + water adsorption system. The system consists of primarily two fluids: refrigerant (water vapour) and heat transfer fluid (water) flowing through various components. Heat input to the system is simulated using multiple heaters and ambient air is used as the heat sink. The laboratory setup incorporates a real time National Instruments (NI) controller to control several digital and analog valves, heaters, pumps and fans along with simultaneous data acquisition from various flow, pressure and temperature sensors. The paper also presents in detail the various automated and manual tasks required for successful operation of the system. Finally the system pressure and temperature dynamics are reported and its performance evaluated for various cycle times. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
This article presents a theoretical analysis of heat and mass transfer in a silica gel + water adsorption process using scaling principles. A two-dimensional columnar packed adsorber domain is chosen for the study, with side and bottom walls cooled and vapour inlet from the top. The adsorption process is initiated from the cold walls with a temperature jump of 15 K, whereas the water vapour supply is maintained at a constant inlet pressure of 1 kPa. The first part of the study is dedicated to deriving relevant scales for the adsorption process by an order of magnitude analysis of energy, continuity and momentum equations. In the latter part, the derived scales are compared with the outcome of numerical studies performed for various domain widths and aspect ratio of bed. A good correlation between scaling and simulation results is observed, thereby validating the scaling approach. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Organo-clay was prepared by incorporating different amounts (in terms of CEC, ranging from 134-840 mg of quaternary ammonium cation (QACs) such as hexadecytrimethylammonium bromide (C19H42N]Br) into the montmorillonite clay. Prepared organo-clays are characterized by CHN analyser and XRD to measure the amount of elemental content and interlayer spacing of surfactant modified clay. The batch experiments of sorption of permanganate from aqueous media by organo-clays was studied at different acidic strengths (pH 1-7). The experimental results show that the rate and amount of adsorption of permanganate was higher at lower pH compared to raw montmorillonite. Laboratory fixed bed experiments were conducted to evaluate the breakthrough time and nature of breakthrough curves. The shape of the breakthrough curves shows that the initial cationic surfactant loadings at 1.0 CEC of the clay is enough to enter the permanganate ions in to the interlamellar region of the surfactant modified smectile clays. These fixed bed studies were also applied to quantify the effect of bed-depth and breakthrough time during the uptake of permanganate. Calculation of thermodynamic parameters shows that the sorption of permanganate is spontaneous and follows the first order kinetics.
Resumo:
Desalination is one of the most traditional processes to generate potable water. With the rise in demand for potable water and paucity of fresh water resources, this process has gained special importance. Conventional thermal desalination processes involves evaporative methods such as multi-stage flash and solar distils, which are found to be energy intensive, whereas reverse osmosis based systems have high operating and maintenance costs. The present work describes the Adsorption Desalination (AD) system, which is an emerging process of thermal desalination cum refrigeration capable of utilizing low grade heat easily obtainable from even non-concentrating type solar collectors. The system employs a combination of flash evaporation and thermal compression to generate cooling and desalinated water. The current study analyses the system dynamics of a 4-bed single stage silica-gel plus water based AD system. A lumped model is developed using conservation of energy and mass coupled with the kinetics of adsorption/desorption process. The constitutive equations for the system components viz. evaporator, adsorber and condenser, are solved and the performance of the system is evaluated for a single stage AD system at various condenser temperatures and cycle times to determine optimum operating conditions required for desalination and cooling. (C) 2013 P. Dutta. Published by Elsevier Ltd.
Resumo:
In this study, we report an approach for the adsorption and desorption of anionic (sulfonated) dyes from aqueous solution by doped polyaniline. In this study, we have synthesized PANI with two dopants, namely, p-toluenesulfonic acid (PTSA) and camphorsulfonic acid (CSA), and used these to adsorb various dyes. It was found that the doped PANI selectively adsorbs anionic dyes and does not adsorb cationic dyes. The adsorption of anionic dyes causes the variation in electrical conductivity of PANI, indicating its potential as a conductometric sensor for these dyes at very low concentration. The adsorbed dyes were desorbed from the polymer by using a basic aqueous solution. The adsorption and desorption kinetics of the dye in the presence of doped PANI were also determined.
Resumo:
The potential benefits of providing geocell reinforced sand mattress over clay subgrade with void have been investigated through a series of laboratory scale model tests. The parameters varied in the test programme include, thickness of unreinforced sand layer above clay bed, width and height of geocell mattress, relative density of the sand fill in the geocells, and influence of an additional layer of planar geogrid placed at the base of the geocell mattress. The test results indicate that substantial improvement in performance can be obtained with the provision of geocell mattress, of adequate size, over the clay subgrade with void. In order to have beneficial effect, the geocell mattress must spread beyond the void at least a distance equal to the diameter of the void. The influence of the void over the performance of the footing reduces for height of geocell mattress greater than 1.8 times the diameter of the footing. Better improvement in performance is obtained for geocells filled with dense soil. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The nucleataon growth model of electrochemical phase formation is analysed for the hnear potential sweep input Apart from deducing diagnostic criteria and method~ of estimating model parameters, the predictions of the nucleation growth model are compared and contrasted with those of a sample adsorption model A dastlnCtlOn is made possible between adsorption and phase transition, which seems useful for understanding the nature of ECPF phenomena, especially underpotentlal deposition (UPD).
Resumo:
Based on XPS and UVPS studies, it is shown that oxygen is preferentially adsorbed molecularly in the singlet state on Cu and Ag surfaces containing presorbed chlorine. Adsorption of chlorine on Cu and Ag surfaces containing presorbed atomic oxygen causes a disappearance of the oxygen. Extended Hückel calculations predict the observed behaviour.
Resumo:
A two-state model allowing for size disparity between the solvent and the adsorbate is analysed to derive the adsorption isotherm for electrosorption of organic compounds. Explicity, the organic adsorbate is assumed to occupy "n" lattice sites at the interface as compared to "one" by the solvent. The model parameters are the respective permanent and induced dipole moments apart from the nearest neighbour distance. The coulombic interactions due to permanent and induced dipole moments, discreteness of charge effects, and short-range and specific substrate interactions have all been incorporated. The adsorption isotherm is then derived using mean field approximation (MFA) and is found to be more general than the earlier multi-site versions of Bockris and Swinkels, Mohilner et al., and Bennes, as far as the entropy contributions are concerned. The role of electrostatic forces is explicity reflected in the adsorption isotherm via the Gibbs energy of adsorption term which itself is a quadratic function of the electrode charge-density. The approximation implicit in the adsorption isotherm of Mohilner et al. or Bennes is indicated briefly.
Resumo:
A simple three-state model permitting two different configurational states for the solvent, together with one for the organic adsorbate, is analysed to derive the adsorption isotherm. The implications of this model regarding pseudo-two-state and pseudo-Frumkin adsorption isotherms are indicated. A critique of the earlier theory of Bockris, Devanathan and Müller is presented in brief.
Resumo:
The charge at which adsorption of orgamc compounds attains a maximum ( \sigma MAX M) at an electrochenucal interface is analysed using several multi-state models in a hierarchical manner The analysis is based on statistical mechamcal results for the following models (A) two-state site parity, (B) two-state muhl-slte, and (C) three-state site parity The coulombic interactions due to permanent and reduced dipole effects (using mean field approximation), electrostatic field effects and specific substrate interactions have been taken into account. The simplest model in the hierarchy (two-state site parity) yields the exphcit dependence of ( \sigma MAX M) on the permanent dipole moment, polarizability of the solvent and the adsorbate, lattice spacing, effective coordination number, etc Other models in the baerarchy bring to hght the influence of the solvent structure and the role of substrate interactions, etc As a result of this approach, the "composition" of oM.x m terms of the fundamental molecular constants becomes clear. With a view to use these molecular results to maxamum advantage, the derived results for ( \sigma MAX M) have been converted into those involving experimentally observable parameters lake Co, C 1, E N, etc Wherever possible, some of the earlier phenomenologlcal relations reported for ( \sigma MAX M), notably by Parsons, Damaskm and Frumkln, and Trasattl, are shown to have a certain molecular basis, vlz a simple two-state sate panty model.As a corollary to the hxerarcbacal modelling, \sigma MAX M and the potential corresponding to at (Emax) are shown to be constants independent of 0max or Corg for all models The lmphcatlon of our analysis f o r OmMa x with respect to that predicted by the generalized surface layer equation (which postulates Om~ and Ema x varlaUon with 0) is discussed in detail Finally we discuss an passing o M. and the electrosorptlon valency an this context.
Resumo:
The relations for the inner layer potential &fference (E) in the presence of adsorbed orgamc molecules are derived for three hterarchlcal models, m terms of molecular constants like permanent &pole moments, polarlzablhtles, etc It is shown how the experimentally observed patterns of the E vs 0 plots (hnear m all ranges of $\sigma^M$, non-linear in one or both regions of o M, etc ) can be understood in a serm-quantltatlve manner from the simplest model in our hierarchy, viz the two-state site panty version Two-state multi-site and three-state (sxte panty) models are also analysed and the slope (3E/80),,M tabulated for these also The results for the Esm-Markov effect are denved for all the models and compared with the earlier result of Parsons. A comparison with the GSL phenomenologlcal equation is presented and its molecular basis, as well as the hmltatlons, is analysed. In partxcular, two-state multa-slte and three-state (site panty) models yield E-o M relations that are more general than the "umfied" GSL equation The posslblhty of vaewlng the compact layer as a "composite medium" with an "effective dlelectnc constant" and obtaimng novel phenomenological descnptions IS also indicated.
Resumo:
A lattice formahsm using "spin variables" is employed to analyse multi-state models for the adsorption of neutral dipoles.In particular, a spin-1/2 (two-state) model incorporating permanent and reduced dipole moments of the solvent and the organic adsorbate,substrate interactions, and &screteness of charge effects is analysed The resulting Generalized Islng Hamaltonian is solved under mean field approximation (MFA) in order to derive the adsorption isotherm for organic molecules A few spin-1 (three-state) models are also analysed under MFA to describe the competitive adsorption of multi-state solvent and organic dipoles, and the appropriate equilibrium relations are derived The unification and isomorphism existing at the Hamlltonlan level for several diverse realizations, such as adsorption of ions and solvent/orgamc molecules, is indicated The possibility of analysing phase transitions using this generalized approach is briefly indicated.