84 resultados para Epoxy Resin
Resumo:
As the study of electrical breakdown phenomena in vacuum systems, gains more importance, a thorough understanding of the breakdown mechanism at high voltages necessitates a chamber for experimental studies. An epoxy-resin chamber has been constructed by casting ring sections which were joined together. The advantages of such a chamber over the conventional metal or glass chamber are given especially as regards the electric field configuration, high voltage lead-in, and the ease of construction. Special facilities can be incorporated while constructing the chamber which makes it more versatile; for example, in pre-breakdown current measurements, electron beam focusing studies, etc.
Resumo:
A hybrid thermosetting maleimido epoxy compound 4-(N-maleimidophenyl) glycidylether (N-MPGE) containing Co(II), Ni(II) and Cu(II) ions was prepared by curing N-MPGE and tetradentate Schiff base Co(II), Ni(II) and Cu(II) complexes. The curing polymerization reaction of N-MPGE with metal complexes as curing agents was studied. The cured samples were studied for thermal stability, chemical (acid/alkali/solvent) and water absorption resistance and homogeneity of the cured systems. The tetradentate Schiff base, 3-(Z)-2-piperazin-1-yl-ethylimino]-1,3-dihydro indol-2-one was synthesized by the condensation of Isatin (Indole-2, 3-dione) with 1-(2-aminoethyl)piperazine (AEP). Its complexes with Co(II), Ni(II) and Cu(II) have been synthesized and characterized by microanalysis, conductivity, Uv-Visible, FT-IR, TGA and magnetic susceptibility measurements. The spectral data revealed that the ligand acts as a neutral tetradentate Schiff base and coordinating through the azomethine nitrogen, two piperazine nitrogen atoms and carbonyl oxygen.
Resumo:
Binary and ternary blends of nylon-6/low density polyethylene (nylon-6/LDPE) and Nylon-6/LDPE/poly(ethylene-co-glycidyl methacrylate) were prepared by melt mixing. The blends exhibit two phase morphology with LDPE dispersed in the form of spherical domains in the nylon-6 matrix. The mechanical properties of the blends were measured by standard methods. It is shown that the use of the epoxy copolymer as a compatibilizer improves the impact strength of the blend as compared to nylon-6, which is attributed to better stress transfer across the interface due to the compatibilizer. The data for each mechanical property were also fitted into a best fit model equation and the method of steepest ascent was applied to arrive at the optimum composition of the blend for that property.
Resumo:
The present study focuses on developing functionally graded syntactic foams (FGSFs) based on a layered co-curing technique. The FGSFs were characterized for compressive and flexural properties and compared with plain syntactic foams. The results showed that the specific compressive modulus was 3-67% higher in FGSFs compared to plain syntactic foams. FGSF exhibited 5-34% and 34-87% higher specific modulus and strength, respectively in flexural mode. The microscopic examinations of comparative responses of the filler and matrix to deformation suggest that the failure is dominated by the matrix. The gradient in the composition of syntactic foams helps in effectively distributing the stress throughout the microstructure and results in improved mechanical performance of syntactic foams. From the microscopy studies, it is evident that, the failure mechanism in the FGSF under flexural loading is governed by a crack that initiated on the tensile side of the specimen and propagated through the thickness to cause complete fracture. The microscopic observations further clearly demonstrate the existence of seamless interfaces between the layers and a clear difference in the cenosphere concentration across the interface, affirming the gradation in the prepared samples. The results show that appropriate compositions of FGSFs can be selected to develop materials with improved mechanical performance. POLYM. COMPOS., 36:685-693, 2015. (c) 2014 Society of Plastics Engineers
Resumo:
The overall reliability of a power transformer depends to a great extent on the sound operation of the bushings thereof. Oil impregnated paper (OIP) insulated bushings have been in use for a long time now. In many situations, it becomes necessary to avoid OIP insulation in bushings. In the recent past, a new technological breakthrough has been achieved whereby the OIP is replaced by epoxy resin impregnated crepe paper (RIP) insulation. This new system has several advantages over OIP and has now become the insulation of choice. However, its long time thermal and electrical performance need to be carefully assessed. This paper reports the results of a study of temperature distribution in the body of insulation, based on the ac conductivity of RIP insulation. A method of computing the maximum thermal voltage of this system is also given.
Resumo:
In an attempt to toughen the epoxy resin matrix for fiber-reinforced composite applications, a chemical modification procedure of a commercially available bisphenol-A-based epoxy resin using reactive liquid rubber HTBN [hydroxy-terminated poly(butadiene-co-acrylonitrile)] and TDI (tolylene diisocyanate) is described. The progress of the reaction and the structural changes during modification process are studied using IR spectroscopy, viscosity data, and chemical analysis (epoxy value determination). The studies support the proposition that TDI acts as a coupling agent between the epoxy and HTBN, forming a urethane linkage with the former and an oxazolidone ring with the latter. The chemical reactions that possibly take place during the modification are discussed.
Resumo:
In an attempt to toughen the epoxy resin matrix for fiber-reinforced composite applications, a chemical modification procedure of a commercially available bisphenol-A-based epoxy resin using reactive liquid rubber HTBN [hydroxy-terminated poly(butadiene-co-acrylonitrile)] and TDI (tolylene diisocyanate) is described. The progress of the reaction and the structural changes during modification process are studied using IR spectroscopy, viscosity data, and chemical analysis (epoxy value determination). The studies support the proposition that TDI acts as a coupling agent between the epoxy and HTBN, forming a urethane linkage with the former and an oxazolidone ring with the latter. The chemical reactions that possibly take place during the modification are discussed.
Resumo:
The effect of hard and refractory alumina additions on the mechanical properties of polymer in general and wear behavior in particular is not well studied. In this work, therefore, the changes in wear behavior of epoxy resin due to the additions of alumina powders have been looked into. Using a pin-on-disc set up, dry sliding wear tests were done on both filled (4, 8, & 11 wt. % alumina) and unfilled samples. A sliding velocity of 0.83 m/sec. and a sliding distance of 2 km were employed for the study. Load range used varied from 9.8 N to about 29 N. The experiments point to an increased resistance to wear with an increased presence of filler in the matrix. Further, higher loads result in larger loss of material irrespective of the filler level in the composite.
Resumo:
Plain epoxy resins or resin impregnated cellulose have found application as electrical insulation in power equipment. In the past, their performance was improved by the use of inorganic oxide fillers of microscopic dimensions. In the recent past nano-particle doped epoxy insulation came into use with a view to further enhance the dielectric properties. This paper reports dielectric investigations into epoxy nano-composites based on a class of metal oxides, Al2O3 and SiO2. In particular, consideration has been given to the partial discharge performance and electrical breakdown under different voltage profiles as a function of the volumetric composition of the nano-particles in epoxy resin.
Resumo:
Epoxy resin GY250 representing diglycidyl ethers of bisphenol-A (DGEBA) was reinforced with 1, 3 and 5 wt % of surface functionalized silver nanoparticles (F-AgNPs) which were synthesized using Couroupita guianensis leaves extract with a view of augmenting the corrosion control property of the epoxy resin and also imparting antimicrobial activity to epoxy coatings on mild steel. Corrosion resistance of the coatings was evaluated by EIS, potentiodynamic polarization studies and cross scratch tests. AFM, SEM, HRTEM and EDX were utilized to investigate the surface topography, morphology and elemental composition of the coatings on MS specimens. Results showed that the corrosion resistance, hardness and T-g of the DGEBA/F-AgNPs coatings increased at 1 wt % of F-AgNPs. The DGEBA/F-AgNPs coatings also offered manifold antimicrobial protection to the MS surfaces by inhibiting the growth of biofilm forming bacteria like P. aeruginosa, B. subtilis, the most common human pathogen E. coli and the most virulent human pathogenic yeast C. albicans.
Resumo:
Birefringent composite models are fabricated using epoxy resin reinforced with unidirectionally oriented glass fibers. The mechanical and photoelastic properties of the material at room temperature are determined. To explore the possibility of application of stress-freezing technique to birefringent composite models, the behavior and properties of this material are studied at elevated temperature (at stress-freezing temperature of the resin). The properties of the material at room and at elevated temperatures are reported. The feasibility of stress freezing glass-fiber-reinforced epoxy composites with low-fiber-volume fraction is discussed.
Resumo:
Describes a simple triggered vacuum gap developed for initiating electric arcs in vacuum which uses the property that the voltage required to breakdown a gap in vacuum in the presence of a solid insulating material is considerably less than the voltage required in the absence of such material. In this triggered vacuum gap a solid insulating material is used in the angular space between the main cathode and the concentric trigger electrode forming the auxiliary gap. Different materials like epoxy resin, Teflon (PTFE) and mica have been used. The trigger voltage was found to vary in the range 560-1840 V. The results with epoxy and Teflon were unsatisfactory because the trigger voltages showed wide scatter and the auxiliary gap was soon bridged by metal particles eroded from the electrodes. Though the trigger voltages required with mica were relatively high, consistent triggering could be obtained for a large number of trials before the auxiliary gap was bridged. This was probably due to better thermal stability of mica as compared with either epoxy or Teflon.
Resumo:
Syntactic foam made by mechanical mixing of glass hollow spheres in epoxy resin matrix is characterized for compressive properties in the present study. Volume fraction of hollow spheres in the syntactic foam under investigation is kept at 67.8%. Effect of specimen aspect ratio on failure behavior and stress-strain curve of the material is highlighted. Considerable differences are noted in the macroscopic fracture features of the specimen and the stress-strain curve with the variation in specimen aspect ratio, although compressive yield strength values were within a narrow range. Post compression test scanning electron microscopic observations coupled with the macroscopic observations taken during the test helped in explaining the deviation in specimen behavior and in gathering support for the proposed arguments.
Resumo:
Epoxy resin bonded mica splitting is the insulation of choice for machine stators. However, this system is seen to be relatively weak under time varying mechanical stress, in particular the vibration causing delamination of mica and deboning of mica from the resin matrix. The situation is accentuated under the combined action of electrical, thermal and mechanical stress. Physical and probabilistic models for failure of such systems have been proposed by one of the authors of this paper earlier. This paper presents a pragmatic accelerated failure data acquisition and analytical paradigm under multi factor coupled stress, Electrical, Thermal. The parameters of the phenomenological model so developed are estimated based on sound statistical treatment of failure data.
Resumo:
The assembly of aerospace and automotive structures in recent years is increasingly carried out using adhesives. Adhesive joints have advantages of uniform stress distribution and less stress concentration in the bonded region. Nevertheless, they may suffer due to the presence of defects in bond line and at the interface or due to improper curing process. While defects like voids, cracks and delaminations present in the adhesive bond line may be detected using different NDE methods, interfacial defects in the form of kissing bond may go undetected. Attempts using advanced ultrasonic methods like nonlinear ultrasound and guided wave inspection to detect kissing bond have met with limited success stressing the need for alternate methods. This paper concerns the preliminary studies carried out on detectability of dry contact kissing bonds in adhesive joints using the Digital Image Correlation (DIC) technique. In this attempt, adhesive joint samples containing varied area of kissing bond were prepared using the glass fiber reinforced composite (GFRP) as substrates and epoxy resin as the adhesive layer joining them. The samples were also subjected to conventional and high power ultrasonic inspection. Further, these samples were loaded till failure to determine the bond strength during which digital images were recorded and analyzed using the DIC method. This noncontact method could indicate the existence of kissing bonds at less than 50% failure load. Finite element studies carried out showed a similar trend. Results obtained from these preliminary studies are encouraging and further tests need to be done on a larger set of samples to study experimental uncertainties and scatter associated with the method. (C) 2013 Elsevier Ltd. All rights reserved.