51 resultados para Cyber-physical energy system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present the design of ``e-SURAKSHAK,'' a novel cyber-physical health care management system of Wireless Embedded Internet Devices (WEIDs) that sense vital health parameters. The system is capable of sensing body temperature, heart rate, oxygen saturation level and also allows noninvasive blood pressure (NIBP) measurement. End to end internet connectivity is provided by using 6LoWPAN based wireless network that uses the 802.15.4 radio. A service oriented architecture (SOA) 1] is implemented to extract meaningful information and present it in an easy-to-understand form to the end-user instead of raw data made available by sensors. A central electronic database and health care management software are developed. Vital health parameters are measured and stored periodically in the database. Further, support for real-time measurement of health parameters is provided through a web based GUI. The system has been implemented completely and demonstrated with multiple users and multiple WEIDs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biomass resources, existing utilization levels and the efficiency of its use have been analyzed for a South Indian village. A biomass based energy efficient strategy has been devised to meet all the energy needs of the village, including substitution of fuels such as electricity and kerosene used in specific activities. Results indicate that the potential as well as the technologies exist for such substitutions. The proposed strategy will lead to an increase in the efficiency of energy use, reduce human drudgery and make villages more self reliant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spatial Decision Support System (SDSS) assist in strategic decision-making activities considering spatial and temporal variables, which help in Regional planning. WEPA is a SDSS designed for assessment of wind potential spatially. A wind energy system transforms the kinetic energy of the wind into mechanical or electrical energy that can be harnessed for practical use. Wind energy can diversify the economies of rural communities, adding to the tax base and providing new types of income. Wind turbines can add a new source of property value in rural areas that have a hard time attracting new industry. Wind speed is extremely important parameter for assessing the amount of energy a wind turbine can convert to electricity: The energy content of the wind varies with the cube (the third power) of the average wind speed. Estimation of the wind power potential for a site is the most important requirement for selecting a site for the installation of a wind electric generator and evaluating projects in economic terms. It is based on data of the wind frequency distribution at the site, which are collected from a meteorological mast consisting of wind anemometer and a wind vane and spatial parameters (like area available for setting up wind farm, landscape, etc.). The wind resource is governed by the climatology of the region concerned and has large variability with reference to space (spatial expanse) and time (season) at any fixed location. Hence the need to conduct wind resource surveys and spatial analysis constitute vital components in programs for exploiting wind energy. SDSS for assessing wind potential of a region / location is designed with user friendly GUI’s (Graphic User Interface) using VB as front end with MS Access database (backend). Validation and pilot testing of WEPA SDSS has been done with the data collected for 45 locations in Karnataka based on primary data at selected locations and data collected from the meteorological observatories of the India Meteorological Department (IMD). Wind energy and its characteristics have been analysed for these locations to generate user-friendly reports and spatial maps. Energy Pattern Factor (EPF) and Power Densities are computed for sites with hourly wind data. With the knowledge of EPF and mean wind speed, mean power density is computed for the locations with only monthly data. Wind energy conversion systems would be most effective in these locations during May to August. The analyses show that coastal and dry arid zones in Karnataka have good wind potential, which if exploited would help local industries, coconut and areca plantations, and agriculture. Pre-monsoon availability of wind energy would help in irrigating these orchards, making wind energy a desirable alternative.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the years, significant changes have taken place with regard to the type as well the quantity of energy used in Indian households. Many factors have contributed in bringing these changes. These include availability of energy, security of supplies, efficiency of use, cost of device, price of energy carriers, ease of use, and external factors like technological development, introduction of subsidies, and environmental considerations. The present paper presents the pattern of energy consumption in the household sector and analyses the causalities underlying the present usage patterns. It identifies specific (groups of) actors, study their specific situations, analyse the constraints and discusses opportunities for improvement. This can be referred to ``actor-oriented'' analysis in which we understand how various actors of the energy system are making the system work, and what incentives and constraints each of these actors is experiencing. It analyses actor linkages and their impact on the fuel choice mechanism. The study shows that the role of actors in household fuel choice is significant and depends on the level of factors - micro, meso and macro. It is recommended that the development interventions should include actor-oriented tools in energy planning, implementation, monitoring and evaluation. The analysis is based on the data from the national sample survey (NSS), India. This approach provides a spatial viewpoint which permits a clear assessment of the energy carrier choice by the households and the influence of various actors. The scope of the paper is motivated and limited by suggesting and formulating a powerful analytical technique to analyse the problem involving the role of actors in the Indian household sector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a cyber physical system like vehicles number of signals to be communicated in a network system has an increasing trend. More and more mechanical and hydraulic parts are replaced by electronic control units and infotainment and multimedia applications has increased in vehicles. Safety critical hard real time messages and aperiodic messages communicated between electronic control units have been increased in recent times. Flexray is a high bandwidth protocol consisting of static segment for supporting hard real time messages and a dynamic segment for transmitting soft and non real time messages. In this paper, a method to obtain the stability region for the random arrival of messages in each electronic control units which is scheduled in the dynamic segment of Flexray protocol is presented. Number of mini slots available in the dynamic segment of Flexray restricts the arrival rate of tasks to the micro controllers or the number of micro controllers connected to the Flexray bus. Stability region of mathematical model of the system is compared with the Flexray protocol simulation results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

India's energy challenges are three pronged: presence of majority energy poor lacking access to modern energy; need for expanding energy system to bridge this access gap as well as to meet the requirements of fast-growing economy; and the desire to partner with global economies in mitigating the threat of climate change. The presence of 364 million people without access to electricity and 726 million relying on biomass for cooking out of a total rural population of 809 million indicate the seriousness of challenge. In this paper, we discuss an innovative approach to address this challenge, which intends to take advantage of recent global developments and untapped capabilities possessed by India. Intention is to use climate change mitigation imperative as a stimulus and adopt a public-private-partnership-driven ‘business model' with innovative institutional, regulatory, financing, and delivery mechanisms. Some of the innovations are: creation of rural energy access authorities within the government system as leadership institutions; establishment of energy access funds to enable transitions from the regime of "investment/fuel subsidies" to "incentive-linked" delivery of energy services; integration of business principles to facilitate affordable and equitable energy sales and carbon trade; and treatment of entrepreneurs as implementation targets. This proposal targets 100% access to modern energy carriers by 2030 through a judicious mix of conventional and biomass energy systems with an investment of US$35 billion over 20 years. The estimated annual cost of universal energy access is about US$9 billion for a GHG mitigation potential of 213Tg CO2e at an abatement cost of US$41/tCO2e. It is a win-win situation for all stakeholders. Households benefit from modern energy carriers at affordable cost; entrepreneurs run profitable energy enterprises; carbon markets have access to CERs; the government has the satisfaction of securing energy access to rural people; and globally, there is a benefit of climate change mitigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

India's energy challenges are multi-pronged. They are manifested through growing demand for modern energy carriers, a fossil fuel dominated energy system facing a severe resource crunch, the need for creating access to quality energy for the large section of deprived population, vulnerable energy security, local and global pollution regimes and the need for sustaining economic development. Renewable energy is considered as one of the most promising alternatives. Recognizing this potential, India has been implementing one of the largest renewable energy programmes in the world. Among the renewable energy technologies. bioenergy has a large diverse portfolio including efficient biomass stoves, biogas, biomass combustion and gasification and process heat and liquid fuels. India has also formulated and implemented a number of innovative policies and programmes to promote bioenergy technologies. However, according to some preliminary studies, the success rate is marginal compared to the potential available. This limited success is a clear indicator of the need for a serious reassessment of the bioenergy programme. Further, a realization of the need for adopting a sustainable energy path to address the above challenges will be the guiding force in this reassessment. In this paper an attempt is made to consider the potential of bioenergy to meet the rural energy needs: (I) biomass combustion and gasification for electricity; (2) biomethanation for cooking energy (gas) and electricity; and (3) efficient wood-burning devices for cooking. The paper focuses on analysing the effectiveness of bioenergy in creating this rural energy access and its sustainability in the long run through assessing: the demand for bioenergy and potential that could be created; technologies, status of commercialization and technology transfer and dissemination in India; economic and environmental performance and impacts: bioenergy policies, regulatory measures and barrier analysis. The whole assessment aims at presenting bioenergy as an integral part of a sustainable energy strategy for India. The results show that bioenergy technology (BET) alternatives compare favourably with the conventional ones. The cost comparisons show that the unit costs of BET alternatives are in the range of 15-187% of the conventional alternatives. The climate change benefits in terms of carbon emission reductions are to the tune of 110 T C per year provided the available potential of BETs are utilized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The term acclimation has been used with several connotations in the field of acclimatory physiology. An attempt has been made, in this paper, to define precisely the term “acclimation” for effective modelling of acclimatory processes. Acclimation is defined with respect to a specific variable, as cumulative experience gained by the organism when subjected to a step change in the environment. Experimental observations on a large number of variables in animals exposed to sustained stress, show that after initial deviation from the basal value (defined as “growth”), the variables tend to return to basal levels (defined as “decay”). This forms the basis for modelling biological responses in terms of their growth and decay. Hierarchical systems theory as presented by Mesarovic, Macko & Takahara (1970) facilitates modelling of complex and partially characterized systems. This theory, in conjunction with “growth-decay” analysis of biological variables, is used to model temperature regulating system in animals exposed to cold. This approach appears to be applicable at all levels of biological organization. Regulation of hormonal activity which forms a part of the temperature regulating system, and the relationship of the latter with the “energysystem of the animal of which it forms a part, are also effectively modelled by this approach. It is believed that this systematic approach would eliminate much of the current circular thinking in the area of acclimatory physiology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing concentrations of atmospheric CO2 influence climate, terrestrial biosphere productivity and ecosystem carbon storage through its radiative, physiological and fertilization effects. In this paper, we quantify these effects for a doubling of CO2 using a low resolution configuration of the coupled model NCAR CCSM4. In contrast to previous coupled climate-carbon modeling studies, we focus on the near-equilibrium response of the terrestrial carbon cycle. For a doubling of CO2, the radiative effect on the physical climate system causes global mean surface air temperature to increase by 2.14 K, whereas the physiological and fertilization on the land biosphere effects cause a warming of 0.22 K, suggesting that these later effects increase global warming by about 10 % as found in many recent studies. The CO2-fertilization leads to total ecosystem carbon gain of 371 Gt-C (28 %) while the radiative effect causes a loss of 131 Gt-C (10 %) indicating that climate warming damps the fertilization-induced carbon uptake over land. Our model-based estimate for the maximum potential terrestrial carbon uptake resulting from a doubling of atmospheric CO2 concentration (285-570 ppm) is only 242 Gt-C. This highlights the limited storage capacity of the terrestrial carbon reservoir. We also find that the terrestrial carbon storage sensitivity to changes in CO2 and temperature have been estimated to be lower in previous transient simulations because of lags in the climate-carbon system. Our model simulations indicate that the time scale of terrestrial carbon cycle response is greater than 500 years for CO2-fertilization and about 200 years for temperature perturbations. We also find that dynamic changes in vegetation amplify the terrestrial carbon storage sensitivity relative to a static vegetation case: because of changes in tree cover, changes in total ecosystem carbon for CO2-direct and climate effects are amplified by 88 and 72 %, respectively, in simulations with dynamic vegetation when compared to static vegetation simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies, over regions influenced by biomass burning aerosol, have shown that it is possible to define a critical cloud fraction' (CCF) at which the aerosol direct radiative forcing switch from a cooling to a warming effect. Using 4 years of multi-satellite data analysis, we show that CCF varies with aerosol composition and changed from 0.28 to 0.13 from postmonsoon to winter as a result of shift from less absorbing to moderately absorbing aerosol. Our results indicate that we can estimate aerosol absorption from space using independently measured top of the atmosphere (TOA) fluxes Cloud Aerosol Lidar with Orthogonal Polarization-Moderate resolution Imaging Spectroradiometer-Clouds and the Earth's Radiant Energy System (CALIPSO-MODIS-CERES)] combined algorithms for example.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The topography of the free energy landscape in phase space of a dense hard-sphere system characterized by a discretized free energy functional of the Ramakishnan-Yussouff form is investigated numerically using a specially devised Monte Carlo procedure. We locate a considerable number of glassy local minima of the free energy and analyze the distributions of the free energy at a minimum and an appropriately defined phase-space "distance" between different minima. We find evidence for the existence of pairs of closely related glassy minima("two-level systems"). We also investigate the way the system makes transitions as it moves from the basin of attraction of a minimum to that of another one after a start under nonequilibrium conditions. This allows us to determine the effective height of free energy barriers that separate a glassy minimum from the others. The dependence of the height of free energy barriers on the density is investigated in detail. The general appearance of the free energy landscape resembles that of a putting green: relatively deep minima separated by a fairly flat structure. We discuss the connection of our results with the Vogel-Fulcher law and relate our observations to other work on the glass transition.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The phase relations in the system Cu-Gd-O have been determined at 1273 K by X-ray diffrac- tion, optical microscopy, and electron microprobe analysis of samples equilibrated in quartz ampules and in pure oxygen. Only one ternary compound, CuGd2O4, was found to be stable. The Gibbs free energy of formation of this compound has been measured using the solid-state cell Pt, Cu2O + CuGd2O4 + Gd2O3 // (Y2O3) ZrO2 // CuO + Cu2O, Pt in the temperature range of 900 to 1350 K. For the formation of CuGd2O4 from its binary component oxides, CuO (s) + Gd2O3 (s) → CuGd2O4 (s) ΔG° = 8230 - 11.2T (±50) J mol-1 Since the formation is endothermic, CuGd2O4 becomes thermodynamically unstable with respect to CuO and Gd2O3 below 735 K. When the oxygen partial pressure over CuGd2O4 is lowered, it decomposes according to the reaction 4CuGd2O4 (s) → 4Gd2O3 (s) + 2Cu2O (s) + O2 (g) for which the equilibrium oxygen potential is given by Δμo 2 = −227,970 + 143.2T (±500) J mol−1 An oxygen potential diagram for the system Cu-Gd-O at 1273 K is presented.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Time scales associated with activated transitions between glassy metastable states of a free-energy functional appropriate for a dense hard-sphere system are calculated by using a new Monte Carlo method for the local density variables. In particular, we calculate the time the system, initially placed in a shallow glassy minimum of the free-energy, spends in the neighborhood of this minimum before making a transition to the basin of attraction of another free-energy minimum. This time scale is found to increase as the average density is increased. We find a crossover density near which this time scale increases very sharply and becomes longer than the longest times accessible in our simulation. This time scale does not show any evidence of increasing with sample size

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In large flexible software systems, bloat occurs in many forms, causing excess resource utilization and resource bottlenecks. This results in lost throughput and wasted joules. However, mitigating bloat is not easy; efforts are best applied where savings would be substantial. To aid this we develop an analytical model establishing the relation between bottleneck in resources, bloat, performance and power. Analyses with the model places into perspective results from the first experimental study of the power-performance implications of bloat. In the experiments we find that while bloat reduction can provide as much as 40% energy savings, the degree of impact depends on hardware and software characteristics. We confirm predictions from our model with selected results from our experimental study. Our findings show that a software-only view is inadequate when assessing the effects of bloat. The impact of bloat on physical resource usage and power should be understood for a full systems perspective to properly deploy bloat reduction solutions and reap their power-performance benefits.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Formic acid, the simplest carboxylic acid, is found in nature or can be easily synthesized in the laboratory (major by-product of some second generation biorefinery processes); it is also an important chemical due to its myriad applications in pharmaceuticals and industry. In recent years, formic acid has been used as an important fuel either without reformation (in direct formic acid fuel cells, DFAFCs) or with reformation (as a potential chemical hydrogen storage material). Owing to the better efficiency of DFAFCs compared to several other PEMFCs and reversible hydrogen storage systems, formic acid could serve as one of the better fuels for portable devices, vehicles and other energy-related applications in the future. This perspective is focused on recent developments in the use of formic acid as a reversible source for hydrogen storage. Recent developments in this direction will likely give access to a variety of low-cost and highly efficient rechargeable hydrogen fuel cells within the next few years by the use of suitable homogeneous metal complex/heterogeneous metal nanoparticle-based catalysts under ambient reaction conditions. The production of formic acid from atmospheric CO2 (a greenhouse gas) will decrease the CO2 content and may be helpful in reducing global warming.