76 resultados para Cutting Speed
Resumo:
Friction force generated in lubricated cutting of steel is experimentally estimated by recording the tangential force experienced by the spherical face of a pin rubbing against a freshly cut surface. The pin and the cutting tool are both submerged in the lubricant and the pin is situated on the cut-track to record the force. The recording shows an instantaneous achievement of a peak in the force curve followed by a decline in time to a steady state value. The peak and not the steady state friction was found to be sensitive to the structure of the hydrocarbon and addition of additive to the oil. The configuration was designed and tested to demonstrate the influence of a reaction film which develops during cutting, on cutting tool friction. Given the strong correlation between the peak friction and the existence of a tribofilm in the cutting zone, the configuration is used to determine the lower limit of a cutting speed regime, which marks the initiation of lubricant starvation, in cutting of steel using an emulsion as a cutting fluid. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
PVC-graphite polymer thick-film resistors were trimmed by a conventional air abrasive technique and the post-trim drift in resistance with time was found to be negative. The net decrease in resistance of trimmed resistors in a given time was found to be a function of resistor composition, cutting speed and temperature. Detailed studies showed this decrease to be due to a decrease in cut width with time. Two new methods, namely bombardment trimming and radiation trimming, were also tried for adjusting the resistance of these resistors and the results were compared with those obtained from abrasive trimming studies.
Resumo:
The random direction short Glass Fiber Reinforced Plastics (GFRP) have been prepared by two compression moulding processes, namely the Preform and Sheet Moulding Compound (SMC) processes. Cutting force analysis and surface characterization are conducted on the random direction short GFRPs with varying fiber contents (25 similar to 40%). Edge trimming experiments are preformed using carbide inserts with varing the depth of cut and cutting speed. Machining characteristics of the Preform and SMC processed random direction short GFRPs are evaluated in terms of cutting forces, surface quality, and tool wear. It is found that composite primary processing and fiber contents are major contributing factors influencing the cutting force magnitudes and surface textures. The SMC composites show better surface finish over the Preform composites due to less delamination and fiber pullouts. Moreover, matrix damage and fiber protrusions at the machined edge are reduced by increasing fiber content in the random direction short GFRP composites.
Resumo:
A new finite element is developed for free vibration analysis of high speed rotating beams using basis functions which use a linear combination of the solution of the governing static differential equation of a stiff-string and a cubic polynomial. These new shape functions depend on rotation speed and element position along the beam and account for the centrifugal stiffening effect. The natural frequencies predicted by the proposed element are compared with an element with stiff-string, cubic polynomial and quintic polynomial shape functions. It is found that the new element exhibits superior convergence compared to the other basis functions.
Resumo:
We apply the method of multiple scales (MMS) to a well known model of regenerative cutting vibrations in the large delay regime. By ``large'' we mean the delay is much larger than the time scale of typical cutting tool oscillations. The MMS upto second order for such systems has been developed recently, and is applied here to study tool dynamics in the large delay regime. The second order analysis is found to be much more accurate than first order analysis. Numerical integration of the MMS slow flow is much faster than for the original equation, yet shows excellent accuracy. The main advantage of the present analysis is that infinite dimensional dynamics is retained in the slow flow, while the more usual center manifold reduction gives a planar phase space. Lower-dimensional dynamical features, such as Hopf bifurcations and families of periodic solutions, are also captured by the MMS. Finally, the strong sensitivity of the dynamics to small changes in parameter values is seen clearly.
Resumo:
In this paper the implementation and application of a microprocessor-based medium speed experimental local area network using a coaxial cable transmission medium are dealt with. A separate unidirectional control wire has been used in order to provide a collision-free and fair medium access arbitration. As an application of the network, the design of a packet voice communication system is discussed.
Resumo:
The operational life and reliability of I.C. engines are limited to a certain extent by the break down of the engine components due to wear. It is advantageous to know the condition of an engine and its components without disassembling for detailed measurements. This paper describes the possibility of employing chemical analysis of the used crank case oil to predict the wear of engine components. It is concluded that the acidity and carbon contents of the crank case oil play a significant role in assessing the wear of copper-lead bearings used for the big end of the connecting rod.
Resumo:
Forward facing circular nose cavity of 6 mm diameter in the nose portion of a generic missile shaped bodies is proposed to reduce the stagnation zone heat transfer. About 25% reduction in stagnation zone heat transfer is measured using platinum thin film sensors at Mach 8 in the IISc hypersonic shock tunnel. The presence of nose cavity does not alter the fundamental aerodynamic coefficients of the slender body. The experimental results along with the numerically predicted results is also discussed in this paper.
Resumo:
The operational life and reliability of I.C. engines are limited to a certain extent by the break down of the engine components due to wear. It is advantageous to know the condition of an engine and its components without disassembling for detailed measurements. This paper describes the possibility of employing chemical analysis of the used crank case oil to predict the wear of engine components. It is concluded that the acidity and carbon contents of the crank case oil play a significant role in assessing the wear of copper-lead bearings used for the big end of the connecting rod.
Resumo:
An important limitation of the existing IGC algorithms, is that they do not explicitly exploit the inherent time scale separation that exist in aerospace vehicles between rotational and translational motions and hence can be ineffective. To address this issue, a two-loop partial integrated guidance and control (PIGC) scheme has been proposed in this paper. In this design, the outer loop uses a recently developed, computationally efficient, optimal control formulation named as model predictive static programming. It gives the commanded pitch and yaw rates whereas necessary roll-rate command is generated from a roll-stabilization loop. The inner loop tracks the outer loop commands using the Dynamic inversion philosophy. Uncommonly, Six-Degree of freedom (Six-DOF) model is used directly in both the loops. This intelligent manipulation preserves the inherent time scale separation property between the translational and rotational dynamics, and hence overcomes the deficiency of current IGC designs, while preserving its benefits. Comparative studies of PIGC with one loop IGC and conventional three loop design were carried out for engaging incoming high speed target. Simulation studies demonstrate the usefulness of this method.
Resumo:
In this article, we study traffic flow in the presence of speed breaking structures. The speed breakers are typically used to reduce the local speed of vehicles near certain institutions such as schools and hospitals. Through a cellular automata model we study the impact of such structures on global traffic characteristics. The simulation results indicate that the presence of speed breakers could reduce the global flow under moderate global densities. However, under low and high global density traffic regime the presence of speed breakers does not have an impact on the global flow. Further the speed limit enforced by the speed breaker creates a phase distinction. For a given global density and slowdown probability, as the speed limit enforced by the speed breaker increases, the traffic moves from the reduced flow phase to maximum flow phase. This underlines the importance of proper design of these structures to avoid undesired flow restrictions.
Resumo:
A new approach is used to study the global dynamics of regenerative metal cutting in turning. The cut surface is modeled using a partial differential equation (PDE) coupled, via boundary conditions, to an ordinary differential equation (ODE) modeling the dynamics of the cutting tool. This approach automatically incorporates the multiple-regenerative effects accompanying self-interrupted cutting. Taylor's 3/4 power law model for the cutting force is adopted. Lower dimensional ODE approximations are obtained for the combined tool–workpiece model using Galerkin projections, and a bifurcation diagram computed. The unstable solution branch off the subcritical Hopf bifurcation meets the stable branch involving self-interrupted dynamics in a turning point bifurcation. The tool displacement at that turning point is estimated, which helps identify cutting parameter ranges where loss of stability leads to much larger self-interrupted motions than in some other ranges. Numerical bounds are also obtained on the parameter values which guarantee global stability of steady-state cutting, i.e., parameter values for which there exist neither unstable periodic motions nor self-interrupted motions about the stable equilibrium.
Resumo:
A new rotating beam finite element is developed in which the basis functions are obtained by the exact solution of the governing static homogenous differential equation of a stiff string, which results from an approximation in the rotating beam equation. These shape functions depend on rotation speed and element position along the beam and account for the centrifugal stiffening effect. Using this new element and the Hermite cubic finite element, a convergence study of natural frequencies is performed, and it is found that the new element converges much more rapidly than the conventional Hermite cubic element for the first two modes at higher rotation speeds. The new element is also applied for uniform and tapered rotating beams to determine the natural frequencies, and the results compare very well with the published results given in the literature.
Resumo:
The present article about the high speed water tunnel facility at the Indian Institute of Science, Bangalore, provides a general description of the tunnel circuit, and brief reports on the performance of the facility and some typical results from investigations carried out in it. A unique aspect of the facility is that it has a horizontal resorber in the form of a large cylindrical tank located in the lower leg of the circuit. The facility has been used, among other things, for flow visualization studies, and investigations on marine propeller hydrodynamics and “synthetic cavitation”. The last topic has been primarily developed at the Indian Institute of Science and shows considerable promise for basic work in cavitation inception and noise.
Resumo:
The operation of a stand-alone, as opposed to grid connected generation system, using a slip-ring induction machine as the electrical generator, is considered. In contrast to an alternator, a slip-ring induction machine can run at variable speed and still deliver constant frequency power to loads. This feature enables optimization of the system when the prime mover is inherently variable speed in nature eg. wind turbines, as well as diesel driven systems, where there is scope for economizing on fuel consumption. Experimental results from a system driven by a 44 bhp diesel engine are presented. Operation at subsynchronous as well as super-synchronous speeds is examined. The measurement facilitates the understanding of the system as well as its design.